
UNCLASSIFIED PROCESSING DATE--160CT70 TITLE--TREATMENT OF MALLEABLE CAST IRON WITH CARBON DIOXIDE -U-AUTHOR-(02)-KANTENIK, S.K., YEMELYANDV, S.YE. COUNTRY OF INFO--USSR SOURCE--LITEINGE PROIZVOD. 1970. (11, 42 DATE PUBLISHED----70 SUBJECT AREAS-MATERIALS TOPIC TAGS--CAST IRON, CARBON DIOXIDE, NONMETALLIC INCLUSION. GRAPHITIZATION, MECHANICAL PROPERTY CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1388 STEP NO--UR/0128/70/000/001/0042/0042 CIRC ACCESSION NO--APOII6837 ----UNCLASSIFIED

USSR

UDC 621.378.001

YEMEL YANOV, V.I.

"Phase Fluctuations CT An Optical Parametric Cacillator Situated Inside A Laser Resonator"

Kventovaya elektronika (Quantum Electronics), Moscow, No 6(12), 1972, pp 35-45

Abstract: The paper considers the phase fluctuations in an internal optical parametric oscillator (ICPO) consisting of a laser madium, a nonlinear crystal, a laser resonator, and the resonator of the optical parametric oscillator. It is shown that in the ICPO exponential instability of the phase fluctuations is possible. The condition of their instability is determined. The minimum possible line width of radiation of the ICPO defined by phase fluctuations is calculated for the stability region. It is shown that optimization of the output power of the ICPO leads to a strong breadening of the emission line. The author thanks work. 3 ill. 4 ref. Received by editors, 14 Sept 1971.

1/1

72 -

YEMEL'YANOV, V	118 129 24 24 44 44 44 44 49 54 51 91 91 91 91 91 91 91 91 91 91 91 91 91	Page 15 15 15 15 15 15 15 15 15 15 15 15 15
April 1	Agents Agents Are Donta Al Weapons Signala Are Given. Chemical Contamination	
M WEAPONS AND DE Edular Khimiche Copress 4 Hard	Outenous Agenta Oute Properties of Poi Gental Gental Sonous Agenta Sonous Agenta Sonous Agenta Sonous Agenta Conter of Chemical Cont Hatlon Against Chemica con When Civil Defense Work in a Center of C	of Incendiary Agents. The ploying Incendiary Agento or Employing Incendiaries. Incendiary Matures.
Translation of Musy Medge, 1971, signed Abstract Chemical Weapons.	Was in which the Tubys in which the Tubys in which the Tuby of Paralystic Pois General Paralystic Pois Schwillstering Pois Paychottaletic Pois Irritants. Methods and Means of E Characteristics of a C Protection of the Population of the Population of Rescue	CONTENTS (Continued) Incendiaries. Characteristics of Incendiary Flunc Thrower Keapons Employis Aviation Means for Employing Defense Against Incendiary Mis

USSR

VDC 632.95

7

SUVOROV, B. V., KAGARLITSKIY, A. D., KAN, I. I., YEMEL, YANOV, V. L., KUTZHANOV, R. T., and PAVLOV, YE. A.

"A Means of Obtaining 3-Cyanopyridine"

USSR Author's Certificate No 311914, filed 28 Jan 70, published 11 Cct 71 (from Referativnyy Ehurnel -- Khimiya, No 10 (II), 1972, Abstract No 10N604p by T. A. Belyayeva)

Translation: 3-CNC₅H_hN (I) is obtained by oxidative ammonolysis of 2-R-5-R' C₅H₃N (II) (Raend R' = alkyl, alkenyl) over a transition-metal catalyst. A mixture of steam and air (300-500 and 100-300 mole, respectively, to each mole of (II) is used as an oxidizing agent. Through a reaction tube (1100X22mm) filled with granulated catalyst (V₂O₅ and TiO₂ in a 1:16 molar ratios) are passed II (R=Me. R'=CH=CH₂), water Air, and NH₃ at a rate of 23 g, 950 g, 30001, and 75 g respectively for each liter of catalyst every hour at a temperature of 370 for 10 hours (time of contact: 0.4 seconds). The catalyst is mushed with petroleum ether, extracted with CHCl₃ and dried over Na₂SO_h. I is separated by rectification. The yield is 83.2%, boiling point 100-4°/24, nelting point 50.4°. I is used as a plant-growth stimulant in agriculture, and for the production of nicotinamide. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

YEMEL'YANOV, Vasiliy Semenovich

(b. 30 Jan (12 Feb) 1901, Khvalynsk, now Saratovskaya Oblast), Soviet metallurgical specialist, corresponding member of AS USSR (1953), Hero of Socialist Labor (1954). Member CPSU 1919. Graduated in 1928 from Moscow Mining Acad. The technological ferromanganese production process developed by him became the basis for the plan of the Zaporozhe Ferroalloy Plant. From 1935-37 tech director of the Chelyabinsk Ferroalloy Plant. From 1937-40, while working in the People's Commissariat of the Defense Industry, he devoted his energies to the organization of armored steel production. In 1940 he was appointed dep chan of the Committee of Stundards under SNK [Sovet Narodnykh Komissarov; Council of People's Commissars | USSR and in 1942 chun of this committee. During the Great Patriotic War 1941-45 he participated in the organization of production of tank bodies and cast metal turrets. From 1945-46 he was in supervisory work in the atomic energy industry. Dept head at the Moscov Engr-Physics Inst (1946), chun of the Commission for Scientific Problems of Disarmament, AS USSR (1966). From 1955-65 a member of the Scientific Advisory Committee of the U.N. and from 1957-65 one of the

[Continued on card 2: see YEMEL'YANOV, Vasiliy Semenovich]

Moscow, BSE, 1972, Vol 9, p 82

YEMEL'YANOV, Vasiliy Semenovich

[Continued from card 1: see YEMEL'YANOV, Vasiliy Semenovich]

administrators of the Internat Agency for Atomic Energy under the U.N. (in Vienna). USSR state prize (1942, 1951). Foreign member of the American Acad of Sci and Arts. Awarded four Orders of Lenin, Order of the Oct Revolution, five other orders, and medals.

Works: "The Metallurgy of Nuclear Fuel," Second Edition, Moscow, 1968; "O Vremeni, o Tovarishchakh, o Sebe," Moscow, 1968; "Na Poroge Voyny," Moscow, 1971.

Moscow, BSE, 1972, Vol 9, p 82

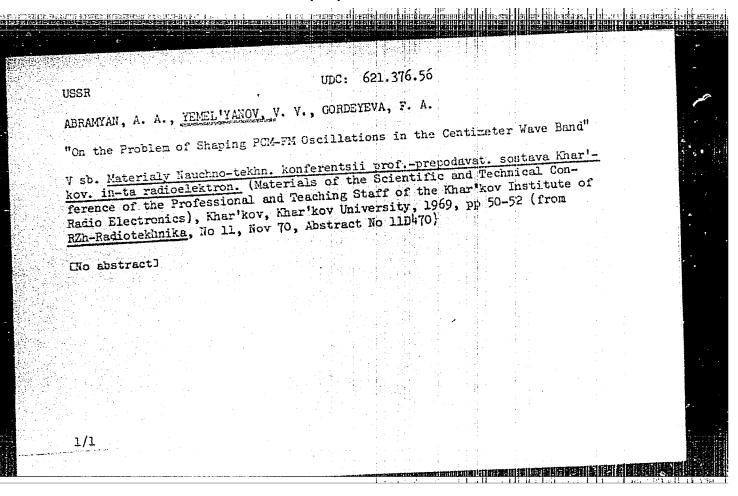
APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

Pulse Technique

USSR

UDC 621.376.56

YEMEL'YANOV. V. V., GORDEYEVA, F. A.


svista artika su kuran su su kuran sa karan sa kuran sa kuran su kuran kuran kuran kuran kuran kuran kuran kur

"PCM-FN-Signal Shaping System with a Train Phase of 0 and π "

Radiotekhnika. Resp. nezhved. temat. nauch.-tekhn. sb. (Radio Engineering. Republic Interdepartmental Thematic Scientific and Technical Collection), No 19, 1971, pp 63-66 (from RZh-Radiotekhnika, No 1, 1972, Abstract No 1D493)

Translation: A system is described for shaping signals with pulse-code phase manipulation (PCM-FM) having a train phase of $\hat{0}$ and π . The value of the given phase of 0 and T is insured by using an automatic phase control system on the signal and rigid synchronization of the leading edge of the manipulating pulse of the master oscillator voltage in the control with the time of passage grid of the manipulator tube through zero. Synchronization is insured by obtaining the manipulating pulses by means of a shaping circuit from the master oscillator voltage. At the output of the shaping circuit, a train of square pulses is created with a repetition rate equal to the oscillation frequency of the master oscillator. The leading edge of these pulses coincides with the time of passage of the sinusoidal voltage of the master oscillator through zero. In order to eliminate deviation of the train phase from θ and π as a result of different time of passage of the signal and the manipulating pulses to the manipulator, a system for automatic phase control of the signal is used. There are 3 illustrations.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC 621.375.126:621.375.143:621.375.421:621.396

KRUT'KO, A. P., VORONIN, A. A., YEMEL'YANOV, V. V.

"Selective Logarithmic Amplifier with Cathode Detection with a Summator made of Transformers"

Radiotekhnika. Resp. mezhved. nauchno-tekhn. sb. (Radio Engineering. Republic Interdepartmental Scientific and Technical Collection), 1969, vyp. 8, pp 71-74 (from RZh-Radiotekhnika, No 1, Jan 70, Abstract No 1020, Resume)

Translation: A schematic is described for a tube logarithmic intermediate frequency amplifier which differs from those described earlier in that the repeater cascades are replaced by pulse transformers as a result of which high stability of the amplifier is achieved with respect to feed voltages. In order to decrease the measurement errors caused by frequency drift of the generator, band filters are used as the resonance circuits. The bibliography has two entries.

1/1

USSR

VDC 539.12

TAKIBAYEV, Zh. S., and YEMEL'YANOV, Yu. A.

"Experiment in the Superhigh-Energy Range With a Target of Dense Material"

Alma-Ata, Izvestiya Akademii Nauk Kazakhskoy SSR, No 2, 1973, pp 16-20

Abstract: An experiment in the superhigh-energy range with a dense target is described. The target is placed at a height of several tens of meters above the X-ray camera. The target thickness is no more than one-half the nuclear path so that the secondary interactions will not distort the picture of the first interaction. A thin target (on the order of 1/10 of the path) thickness of the target can be on the order of 1/3 of the interaction half, but the individual layers must be at some distance from each other. The there is a reliable criterion for visual selection of the target interactions there is a reliable criterion for visual selection of the target interactions E0 = 1014-1015 electron volts is several square centimaters), and therefore events, the height of the interaction point is known with an accuracy of 1/2 percent, significantly improving the reliability of the results; 3)

USSR

TAKIBAYEV, Zh. S., and YEMEL'YANOV, Yu. A., Izvestiya Akademii Nauk Kazakhskoy SSR, No 2, 1973, pp 16-20

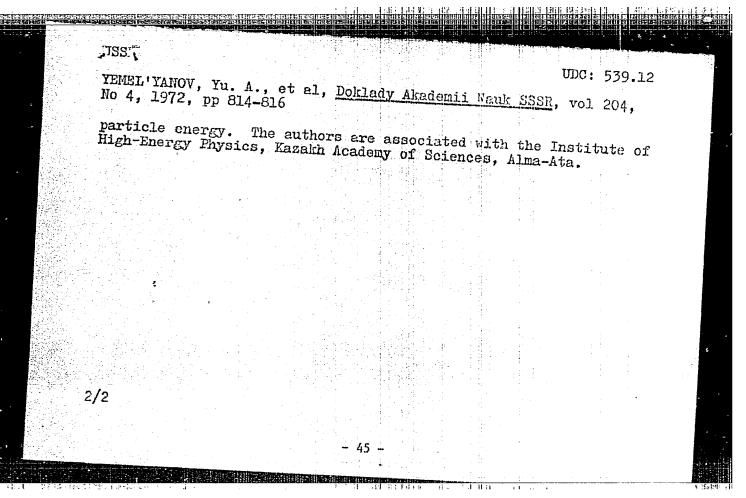
exact knowledge of the point of interaction permits combination of families of gamma-quanta into the corresponding interaction (if several meson clusters are generated in the interaction) and determination of the transverse pulses with respect to the direction of the primary particles; 4) this analysis offers the possibility of discovering the true angular and energy distributions of the secondary particles in the individual acts of the interaction.

2/2

- 88 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR


VDC: 539.12

YEMEL YANOV YU. A., YEREMENKO, Yu. A., and TAKIBAYEV, Zh. S., Academician of the Kazakh Academy of Sciences

"Possible Redistribution of Energy Among Generated Particles in the Range of Several Hundred KEV"

Moscow, Doklady Akademii Nauk SSSR, vol 204, No 4, 1972, pp 814-

Abstract: In earlier work, the authors proposed study of the behavior of various angular and energy characteristics as functions of the energy given to all generated particles, since they felt that such an approach helps in the direct study of the process of generating secondary particles and may give additional information on meson bunchings or fireballs. The present paper is devoted to investigating the distribution of the energy given to all secondary data obtained from earlier experimental mesons. For the analysis, the bekev, et al, Reprint IYAF AN KAZSER, Alma-Ata, 1969; N. L. Griplotted for the energy of charged and neutral ions as a function of the total generated particle energy and for the complete and partial inelasticity coefficients as functions of the primary

USSR

ASHURLY, Z. I., BABAYAN, V. G., YEMEL YANOV, YU. M., MOROZOVA, N. P., FEDOTOVA, T. A.

"Effect of the Frequency on the Ignition Voltage in an Ozonizer"

Moscow, Khimiya i Fizika Nizkotemperaturnoy Plazmy, Moscow University Press, 1971, pp 121-125

Abstract: The authors investigate the ignition voltage as a function of frequency in an ozonizer with a 3 mm discharge gap at frequencies of 50, 500, 1000, 2000, and 3000 Hz. The reacter was a flat ozonizer of special design which fed the gas into the discharge zone of the ozonizer. The dielectric barriers were glass plates ground on both sides 1 mm thick and 100 mm in diameter with plexiglass rings glued to the edges to prevent breakdown on the glass surface. Ground aluminum electrodes 70 mm in diameter were applied to the glass plates. It was found that the ignition voltage decreases from 6900 to 5300 volts when the frequency increases from 50 to 3000 Hz. The experimental results agree satisfactorily with theoretical calculations. Two figures, one table, bibliography of ten titles.

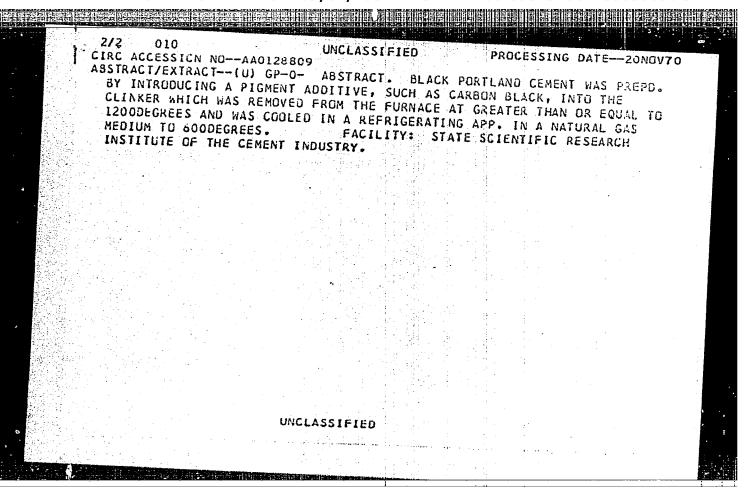
1/1

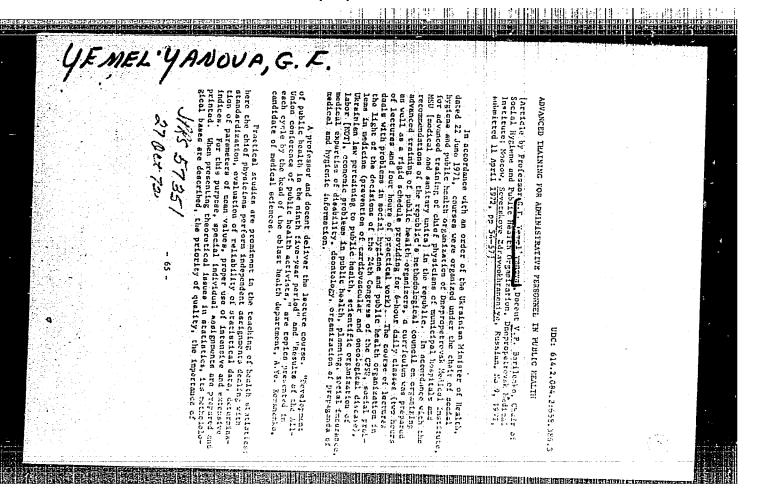
83

USSR

UDC: 621.375.142

YEVEL YANOV YU. M.

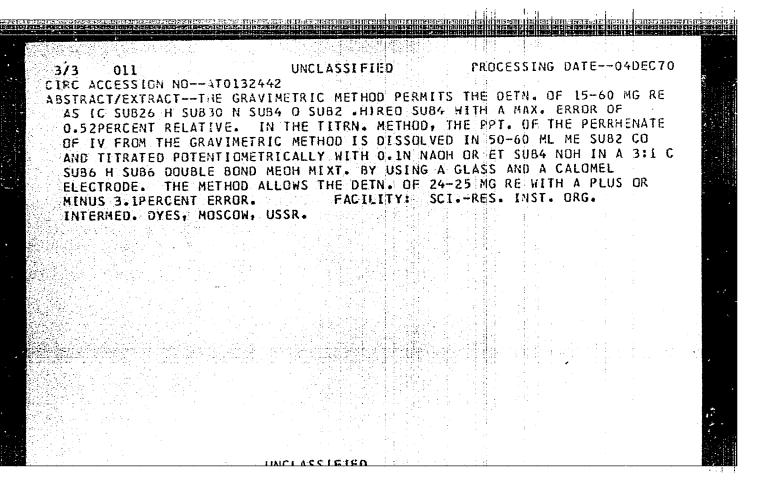

"On Analyzing Nonlinear Effects in a Resonance Amplifier"


Tr. Mosk. elektrotekhn. in-ta svyazi (Works of the Moscow Electrical Engineering Institute of Communications), 1970, vyp., pp 69-74 (from RZh-Radiotekhnika, No 11, Nov 70, Abstract No 11D24)

Translation: In order to account for effects in the first stages of a transistorized receiver when frequency interference signals differ considerably from the resonance tuning of the amplifier, the amplitude response with respect to the second harmonic is introduced in addition to the amplitude response with respect to the fundamental frequency. The graphs which are plotted show that blocking of the weak signal increases monotonically with a rise in the amplitude of the interfering signal. The depth of cross modulation increases to the value of the interference modulation, and then decreases somewhat. The effect of cross modulation is always present in combination with suppression of a weak signal. The products of mutual modulation reach a maximum at 50-70 mV, and then drop somewhat. Bibliography of four titles. N. S.

1/1

UNCLASSIFIED PROCESSING DATE--20NOVYC AUTHOR-(05)-KMITRIYEVA, V.A., KRAVCHENKO, I.V., ALESHINA, O.K., CHISTYAK V. G.I. YEMELYANOVA . D.YA. COUNTRY OF INFC-USSR REFERENCE-GIRRYTIYA, IZUBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970, DATE PUBLISHED -- 01 APRTO TGPIC TAGS-PATENT, CEMENT, PIGMENT, CARBON BLACK, HIGH TEMPERATURE HEAT SUBJECT AREAS-MATERIALS TREATMENT CONTROL MARKING-NO RESTRICTIONS STEP NO--UR/0482/70/000/000/0000/0000 DOCUMENT CLASS--UNCLASSIFIED PROXY RECL/FRAME--3002/1410 CIRC ACCESSION NO--AA0128809 UNCLASSIFIED



011 1/3 PROCESSING DATE--04DEC70 UNCLASSIFIED TITLE--PERRHENATES (F ANTIPYRINE AND ITS DERIVATIVES. GRAVIMETRIC AND TITRIMETRIC DETERBINATION OF RHENTUM BY MEANS OF AUTHOR-(05)-AKIMOV, V.K., BUSEV, A.I., ZAYTSEV, B.YE., VEMELYANOVA, I.A., COUNTRY OF INFO--USSR SOURCE-ZH. ANAL. KHIM. 1970, 25(3), 518-25 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY, EARTH SCIENCES AND OCEANOGRAPHY TOPIC TAGS--RHENIUM, MINERAL, METAL CHEMICAL ANALYSIS CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0161 STEP NO--UR/0075/70/025/003/0518/0525 CIRC ACCESSION NO-AT0132442 UNCLASSIFIED

011 UNCLASSIFIED PROCESSING DATE--04DEC70 CIRC ACCESSION NO--ATO132442 ABSTRACT/EXTRACT-- (U) GP-0-ABSTRACT. PERRHENATES OF ANTIPYRINE (1), DIANTIPYRYLMETHANE (III), DIANTIPYRYLMETHYLMETHANE (IIII), DIANTIPYRYLPROPYLMETHANE (IV), AND DIANTIPYRYLPHEMYLMETHANE (V) WERE OBTAINED BY ADDN. OF 2PERCENT 1:1 PYRYLMETHANES, ACOH TO AN ACID (0.1-0.5N H SUB2 SO SUB4) SOLN. OF KRED SUB4. ALL THE PERRHENATES ARE DIFFICULTLY SOL. IN H SUB2 O WITH THE EXCEPTION OF THAT WITH I. COMPN. AND STRUCTURE WERE STUDIED. THE PERRHENATE OF I IS A WHITE THEIR POWDER SOL. IN H SUB2 O AND IN MOST OF THE ORG. SOLVENTS AND DECOMPS. ON MELTING. THE PERRHENATE OF II DISSOLVES IN MINERAL ACIDS AND ORG. SOLVENTS, DECOMPS. ON MELTING AT 190DEGREES: THE PERRHENATE OF III BEHAVES ANALOGOUSLY TO THAT OF II, M. 116DEGREES: THE PERRHENATE OF IV MELTS AT 198DEGREES AND THAT OF V AT 202DEGREES. PERRHENATES BEHAVE IN NONAQ. MEDIA AS MONOBASIC ACIDS AND CAN BE TITRATED BY ALKALIS. TITRN. CURVE HAS 1 JUMP, REPRESENTING THE NEUTRALIZATION OF THE CATION. THE PERRHENATE OF 1 IS THE MOST ACID, THOSE OF IV AND V THE WEAKEST ACIDS. THE SOLY. OF THE PERRHENATES DECREASES IN THE ORDER I GREATER THAN II GREATER THAN III GREATER THAN IV GREATER THAN V. THE BEST PRECIPITANT HOWEVER IS IV. THE SOLY. OF THE PERRHENATE OF IV INCREASES SOMEWHAT AFTER INCREASING THE ACIDITY OF SOLNS. A GRAVIMETRIC AND A TITRIMETRIC METHOD HAS DEVELOPED FOR RE DETN. BY USING IV AS PRECIPITANT. ALKALI AND ALK. EARTH METALS, ZNIII), ALIIIII, CDIIII, FE(11), CU(11), CL PRIME NEGATIVE AND SO SUB4 PRIME NEGATIVE NEGATIVE DO NOT INTERFERE; MO(VI), W(VI), NO SUB3 PRIME NEGATIVE DO.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--300CT70
TITLE-ACID BASE PROPERTIES OF COMPLEXES OF METALS WITH ANTIPYRINE AND ITS
DERIVATIVES IN NONAQUEOUSHEDIA -UAUTHOR-(03)-AKIMOV, Y.K., BUSEV, A.I., YEMELYANOVA, I.A.

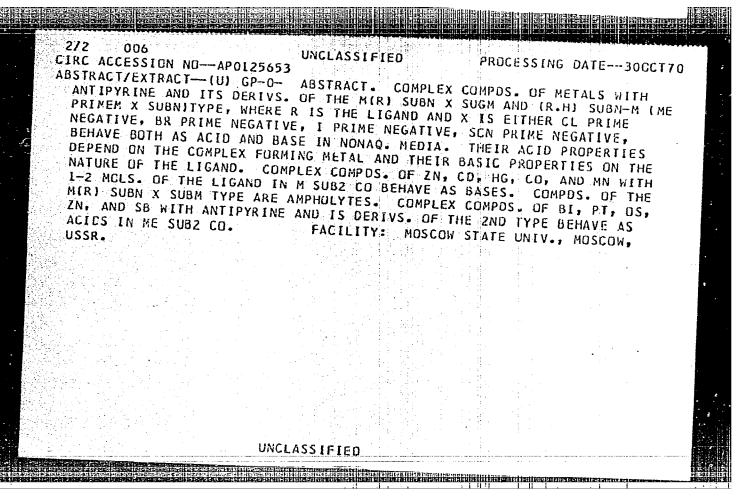
COUNTRY OF INFO-USSR

SCURCE-ZH. ANAL. KHIM. 1970, 25(1), 40-4

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS-METAL COMPLEX COMPOUND, HETERO CYCLIC NITROGEN COMPOUND, ACID BASE COMPLEX, CADRIUM COMPLEX, BISMUTH COMPOUND, PLATINUM COMPLEX


CENTROL MARKING-NO RESTRICTIONS

DCCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—2000/2046

STEP NO--UR/0075/TO/025/001/0040/0044

CIRC ACCESSION NO--AP0125653

UNCLASSIFIED

USSR

UDC: 669.14:621.785.545

SHEPELYAKOVSKIY, K. Z., YEMEL'YANOVA, L. G., ALEKSAKHIN, G. F.

"Selection of Optimal Modes of Induction Heating for Hardening as a Function of Initial Structure"

Sb. Tr. Mosk. Vech. Metallurg. In-t [Collected Works of Moscow Permanent Institute for Metallurgy], 1972, No 12, pp 424-429 (Translated from Referativnyy Zhurnal Metallurgiya, No 8, 1973, Abstract No 81866, by the authors).

Translation: Modes of induction heating are studied for the initial structures of steels with various degrees of differentiation, characterized quantitatively. It is demonstrated how the heating mode must be changed to produce optimal structure and properties. 2 figures, 2 tables, 3 biblio. refs.

1/1

USSR

UDC 669.285.018.8:620.186:669-977

YEMEL YANOVA, L. I., DUSHIN, YU. A., SOLOMKO, YU. V.

"Variation of the Structure of MT Alloy in the Case of High-Temperature Holding in an Inert Gas Stream"

Metallovedeniye -- V sb. (Physical Metallurgy -- collection of works), No 14, Leningrad, Sudostroyeniye Press, 1970, pp 194-199 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 41760)

Translation: The structure of NT alloy was studied after operation in an argon stream at $1,700^{\circ}$ and holding from 10 minutes to 20 hours. Complex redistribution of the alloy components under the effect of a mixture of 0_2 in

argon was detected. The experimental results agree with thermodynamic and diffusion estimates. There are 4 illustrations, 1 table, and an 8-entry bibliography.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UNC 621.762.002.5(088.8)

MEL'NIKOV, V. N., TRET'YAKOV, V. I., YEMEL'YANOVA. M. D., MUKHAMEDZHANOV, A. K., KAMENSKAYA, D. S., MORGUN, G. N., CHAVRIKOV, M. G., and GRACHEV, Yu. S.

"Rotating Electrical Furnace for Production of Metallic Powders"

USSR Author's Certificate No 267823, Filed 23/06/66, Published 23/07/70 (Translated from Referativnyy Zhurnal-Metallurgiya, No 2, 1971, Abstract No 2 G477 P)

Translation: The furnace includes a hopper, loading and unloading chambers with worms, a body, rotating tube, and a device for removal of the layer of powder accumulating on the surface of the tube. In order to increase productivity of the process and improve working conditions, the device for removal of the powder layer from the surface of the tube is firmly fastened in the working space of the tube so that its leading edge is located parallel to its axis and its working face is at an angle to the radius. The device is attached to parts of the loading and unloading chambers.

1/1

. 33.

USSR

UDC 616.981.452-084.47

A PROSE SERVICE EN LEGIS DE L L'ARTICLE DE L'ARTICLE DE LEGIS DE LEGIS DE L'ARTICLE L'UN EQUI INTERNIBILITE DE L'ARTICLE DE L'ARTICLE DE L'A

AGAFONOV, V. I., BABKIN, Ye. I., VDOVIN, D. G., VOROFEYCHIKOV, V. M., VOROB'YEV, A. A., GANLESHKO, Kh. P., GAPOCHKO, K. G., GEFEN, N. Ye., YEVSTIGNEYEV, V. I., YENEL'YANOVA, O. V., ZENSKOV, Ye. M., IMAMALIYEV, O. G., KANALOV, I. I., KVIRIKADZE, V. V., KUTTREV, P. A., MISNIKOV, O. P., PUSHKAREV, V. P., and ROZDESTVENSKIY, D. A., Military Medical Academy imeni S. M. Kirov, Leningrad

"A Comparative Efficiency Characteristic of Different Immunization Methods Against Plague Infection"

Moscow, Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, No 11, 1972, pp 106-112

Abstract: Analysis of the available literature data led to the conclusion that oral, aerogenic, and jet immunication methods are the most efficient compared with subcuteneous and skin methods. The average number of potients inoculated against plague infection was 517, 817 (419), and 937 per hr for jet injectors, aerogenic method liquid and dry vaccine, and oral method (tablets), respectively, compared with only 43 and 28 for the subculaneous and skin methods, respectively.

1/1

. Da .

USSR

UDC 669.14.018.8

SHUSTOVA, Z. F., SINYAVINA, R. A., YEMEL'YANOVA, V. A., ROZENFEL'D, I. L., KUZNETSOV, G. G., RAYMOND, E. D., and NEFEDOV, V. P.

"Inclination toward Stress Corrosion Cracking of 1Kh16NhB (EP-56) High-Strength Stainless Steel"

Moscow, Zashchita Metallov, Vol 6, No 6, Nov-Dec 70, pp 696-700

Abstract: This article contains the results of a study of the effect of heat treatment conditions on the inclination of welded joints of 1Kh16NhB steel to stress corrosion cracking. This steel is a high-strength steel of the martensitic class heat-treated by quenching from 950-1,050° and annealing at 300 or 600° . The stress-rugture strength of the steel is \geq 120 kg/mm in the former case and \geq 100 kg/mm in the latter case. It was established earlier that neither the basic metal nor the welded joints of this steel in the fully heat-treated state were inclined to stress corrosion cracking. In the present investigation the inclination toward stress corrosion cracking was evaluated by the time of occurrence of cracks in the welded joint in a saline mist at room temperature.

From the tabulated data it is noted that unannealed samples and samples annealed at 300° exhibit an inclination toward stress corrosion cracking.

-1/3

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

HARLE HARLE CHECKAL III CHECKALICA CARACHAR CALICARIA CALICARIA CARACHARIA CONTRA CARACHARIA CARACH

USSR

SHUSTOVA, Z. Z., et al., Zashchita Metallov, Vol 6, No 6, Nov-Dec 70, pp 696-700

Welded joints annealed at 600° are not inclined to such cracking. Pictures are presented showing the microstructure of a welded joint made of 1Kh16NhB steel and the hardness distribution in the welded joint. Comparison of metallographic and corrosion studies shows that the section near the weld subjected to heating in the temperature range of 175-550° is distinguished by lower corrosion resistance. It is possible to decrease the tendency toward corrosion cracking of 1Kh16NhB steel joints not only by high temperature annealing (600°) but also by high temperature quenching of the steel before welding. The tendency of the welded joints toward corrosion cracking was found to depend on the structural state of the basic metal before welding. A table is presented showing the effect of slow cooling and induced heating on the stress corrosion cracking of 1Kh16NhB thick sheet steel in a saline must atmosphere.

It is concluded that yelded joints of 1Kh16NLB steel made of material with a strength of 100 kg/mm and annealed at 300 and 600 are not inclined to stress corrosion. Slow cooling of the steel during quenching increases the teniency of the unannealed and low-temperature (300) annealed welded joints to stress corrosion cracking. Heating 1Kh16NLB steel subjected to high tempera-

2/3

10 L

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

SHUSTOVA, Z. F., et al., Zashchita Metallov, Vol 6, No 5, Nov-Dec 70, pp 696-700

ture annealing in the 475-550° range can cause a tendency toward corrosion under stress. When quenching with slow cooling the inclination toward cracking is exhibited after a short delay (5 minutes) at 475-550°. In the case of air quenching this inclination is exhibited after a longer period (2 hours).

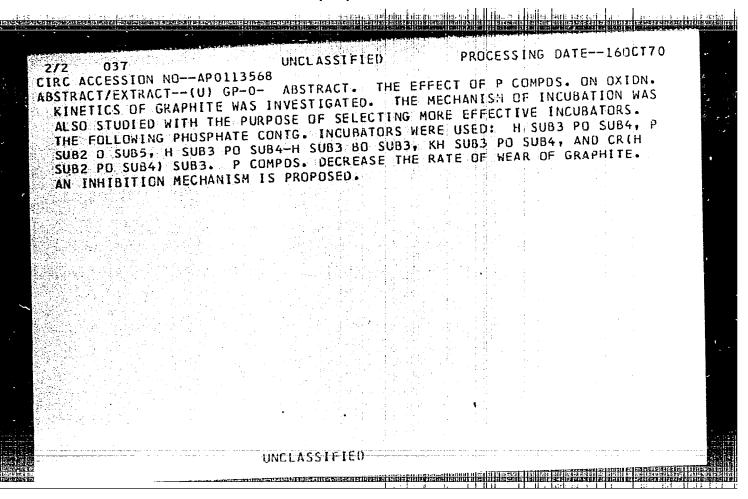
3/3

Graphite

USSR

VDC 621.893

VASIL'YEV, YU. N., Candidate of Chemical Sciences, and YEKEL'YANOVA, V. M., and FUGOL', V. A., Candidates of Technical Sciences


"Antifriction Graphite Material"

Moscow, Mashinostroitel', No 2, Feb 74, p 42

Abstract: A new antifriction graphite material ATG, being produced in experimental batches, has been designated for use in friction assemblies operating at temperatures up to 650° C. It contains special compounds that increase its wear resistance at room temperature by approximately 10 times and insure a good lubricating capability at temperatures up to 650° C. Seals made of ATG, 1000-mm diameter, worked for more than 500 hours at 600° C, 4-kgf/cm² load, and 1-m/sec slip rate, and preserved their efficiency. The same was true for ATG piston rings after 100 hours at 600-650° C and a pressure of 3-5 kgf.cm².

1/1

UNCLASSIFIED PROCESSING DATE--160CT70 1/2 037 TITLE--EFFECT OF PHOSPHORUS COMPOUNDS ON THE OXIDATION RATE AND RATE OF WEAR OF SYNTHETIC GRAPHITE -U-AUTHOR-(02)-VASILYEV, YU.N., YEMELYANOVA, V.M. COUNTRY OF INFO--USSR SOURCE-IZV. AKAD. NAUK SSSR, NEORG. MATER. 1970, 6(2), 201-6 DATE PUBLISHED ---- 70 SUBJECT AREAS--MATERIALS TOPIC TAGS-GRAPHITE, PHOSPHORUS COMPOUND, WEAR RESISTANCE, OXIDATION RATE, OXIDATION INHIBITION CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0704 STEP NO--UR/0363/70/006/002/0201/0206 CIRC ACCESSION NO--APOIL3568 ----UNCLASSIFIED THE STATE OF THE PROPERTY OF T

USSR

UDC: 666.896

VASIL'YEV, YU. N., and YEMEL'YANOVA, V. M.

"Effects of Phosphorus Compounds on the Oxidation Rate and Wear Intensity of Syntetic Graphite"

Moscow, Neorganicheskiye Materialy, Vol 6, No 2, Feb 70, pp 201-206

Abstract: Self-lubricating graphite materials are used in friction joints which are suitable for service at high (>1000-1500°C) temperatures in a reducing or a neutral medium. In open air, graphite materials oxidize at an appreciable rate. To reduce the oxidation rate, it is advisable to impregnate the material with phosphorus compounds. This study concerns the effect of various phosphorus compounds on the oxidation rate as well as of the mechanism of inhibition in order to select more effective inhibitors. AG-1500 antifriction graphite was used as the experimental material. The inhibitors were aluminum phosphate, zinc diethylorthophosphate, aluminum diethylorthophosphate, polymethylphenylsiloxane with a phosphorus-containing hardening agent, phosphoric acid, phosphorus pentoxide, and others. The graphite was pressure-impregnated with inhibitor solutions in an autoclave. The friction tests were conducted on a laboratory friction machine

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

VASIL'YEV, YU. N., and YEMEL'YANOVA, V. M., Neorganicheskiye Materialy, Vol 6, No 2, Feb 70, pp 201-206

simulating end-type seals. Tables in the original article show graphite oxidation rate as a function of the partial pressure of oxygen, effect of oxidation time of graphite impregnated with aluminum phosphate on oxidation rate, wear intensity as a function of temperature, and rate constants for both inhibited and untreated graphite. It was found that phosphorus compounds reduce the wear intensity of graphite. Various suggestions are made regarding the mechanism of inhibition.

2/2

35...

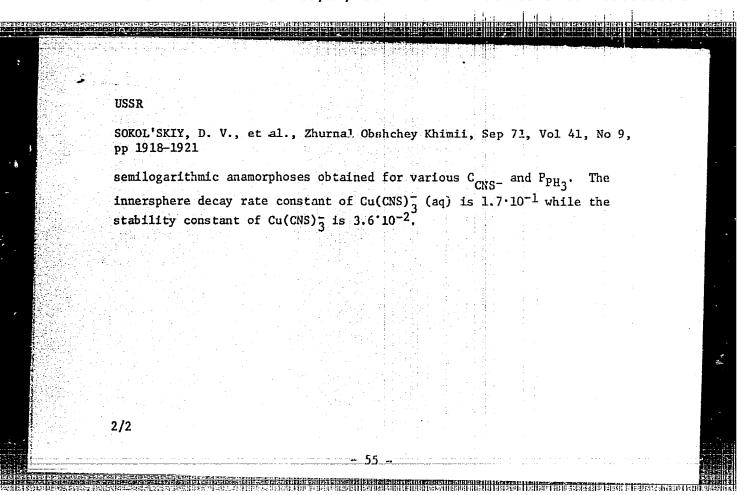
APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC 542.942.6:546.562

SOKOL'SKIY, D. V., DORFMAN, Ya. A., and YEMEL'YANOVA. V. S.

"Phosphine Reduction of Cupric Thiocyanates in Solutions"


Leningrad, Zhurnal Obshchey Khimii, Sep 71, Vol 41, No 9, pp 1918-1921

Abstract: The kinetics and mechanism of the phosphine reduction of cupric thiocyanates in solution are discussed. The mechanism of the reaction is rather complex and comprises a number of elementary stages in which the reaction rate appears to depend on the activity of the system's components. According to the given scheme, the reduction is of a catalytic nature with CNST ions being responsible for the catalysis. The kinetics of the reaction was studied on a circulation unit. Use was made of a gas mixture containing nitrogen, phosphine and acetylene, the phosphine concentration being 0.08-0.008% by volume. The phosphine concentration after the reaction $\rho_{\rm col}^{\rm H3}$ was 0.005% by volume. The CuCl2--KCNS aqueous solution

potential was measured with a platinum electrode relative to the ${\rm Hg/Hg_2Cl_2}$ -HCl system and then recalculated on a hydrogen scale. Kinetic and potentiometric curves are given for the phosphine reduction of copper II thiocynates obtained for various ${\rm PH_3}$ concentrations (% by vol.). A diagram shows 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

os pilos sententiji mai kesumuti isa meritus kuren kuntun in majala lihangan in mukanas peritsi ana peritsi ke Berutus persententisan erakun kuntu kanas purakun kanas kuntun jalah lihangan in mukanas peritsi ana peritsi k

PHENERGY.

CHARLES OF THE PROPERTY OF THE PROP

USSR

YEMEL'YANOVA, Z. M., PAVLOV, B. M.

"Calculation of Supersonic Viscous Flow around Blunted Conical Bodies"

Sb. Rabot Vychisl. Tsentra Mosk. Un-ta [Collected Works of Moscow University Computer Center], 1972, Vol 19, pp 3-12 (Translated from Referativnyy Zhurnal Mekhanika, No 5, 1973, Abstract No 5B245, by 1. N. Murzinov).

Translation: This is a continuation of the study (see Pavlov, B. M., Izv. AN SSSR. Mekh. Zhidkosti i Gaza, 1968, No 3, pp 128-133, RZhMekh, 1968, 118355) of the flow of a supersonic stream around blunted bodies by means of numerical solution of the Navier-Stokes equations. The problem of the flow of a moderately rarefied gas around sphere-cone (cylinder) type bodies is also solved in the same statement. Results are presented from calculation of five versions of distribution of pressure, friction, thermal streams and fields of gas dynamic quantities in a number of cross sections. In the versions studied, the Mach number of the incident stream varied from 3 to 20, the Reynolds number -- from 200 to 500. The results of the calculations performed showed that there is practically no influence of the inclination of the generatrix of the side surface of the body on the flow near the blunt

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

YEMEL'YANOVA, Z. M., PAVLOV, B. M., Sb. Rabot Vychisl. Tsentra Mosk. Un-ta, 1972, Vol 19, pp 3-12.

spherical end, although a narrow, nonclosed area of subsonic flow extends along the body. A significant increase (up to 90%) in pressure on the side surface in comparison to non viscous flow is also noted.

2/2

- 23 -

USSR

UDC 629,13.014.69-506.4

KARAKASHEV, V. A. and YEMEL'YANTSEV, G. I., Leningrad Institute of Frecise Mechanics and Optics

"On the Analysis of Errors in a Coupled Inertial Navigation System"

Leningrad, Priborostroyeniye, Vol 16, No 5, 1973, pp 75-80

Abstract: The system receives information from absolute angular velocity sensors for the continuous calculation of a matrix of direction cosines which determine the orientation of the axes of the object in which the system is mounted. Errors occur due to inaccuracy of the original settings, variation in the sensitive elements, computational errors, simplifications in the algorithm, etc. All the processing errors can be reduced to equivalent inaccuracies in the primary information. The errors are analyzed for a vehicle moving in level horizontal flight over a spherical earth surface. It is shown that the system has the same sort of errors as an inertial navigation system in which the gyrostabilized platform carrying the accelerometers simulates some moving coordinate system. A peculiarity of the coupled system is the presence of additional errors due to vehicle roll and inaccuracies in the computer.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

YEMEL	under consideration, intended for an ob along the surface of a spherical Earth, form: The idea of a glmballess INS and one was proposed by L. L. Trachev in 1943 [Market of the content o	9. [레롱텔의 시간 호텔로 시장 Harris March 1987]	Sytins
	The algorithm for generation of the navigational information in the INS consideration, intended for an object moving on a horizontal plane the surface of a spherical Earth, may be presented in the following in the surface of a spherical Earth, may be presented in the following in the surface of a spherical Earth, may be presented in the following in the surface of the algorithms of its functioning posed by L. I. Trachev in 1943 [1].	TALAITAL MALYSIS OF THE ERRORS OF CIMBALLESS INERTIAL NAVIGATION SYSTEM ANALYSIS OF THE ERRORS OF CIMBALLESS INERTIAL NAVIGATION SYSTEM ANALYSIS OF THE ERRORS OF CIMBALLESS INERTIAL NAVIGATION SYSTEM OF Precision Nuchanics and Optics, Lenningrad, Talesty Lenningrad, Institute Entity, Russian, No. 5, 1973, recommended by the Chair of Cyroscopic Instruments and Devices, signed to press 5 December 1971, pp. 75-867 In this article an analysis is given of a connected (gimballess) of errors. Analytical expressions are derived for the errors of information. In this article an analysis is given of a connected (gimballess) of errors. Analytical expressions are derived for the errors of information. We will consider a gimballess inertial navigation system (INS)s, using the orientation of the guiding cosines Ball by U. (I, js. 1, 23), deterning the orientation of the axes x y x, rigidly connected with an object ton 57 (drawing).	CHROC JPRS 59688

X4.2/ the transmitted beam and generation of thermal damage centers. structure of a piexiglass. the substance plays an important role; e.g. the less the the molecular strength; accordingly, destruction was noted along dispersed powder, sintered to form a porous medium with pore Tosts to show this effect were done with a silicate glass containing a incident on the pore may be reflected, resulting in interference with in such cases for glass or ionic crystals, as much as 70% of light linear dimension of the pore is greater than laser w. ... length A ; applications. The case considered assumes that the characteristic investigations show that organic glass and other amorphous polymers take place and cracks are observed. The aggregate structure of molecules do not absorb the waves; but internal destruction does of laser radiation is such that at low intensities unstressed polymer destruction can be caused by both heat and light. The wavelength size a 5 microns and a mean pore spacing of 30 microns. contain hyper-molecular structures. Figure 1 shows the microaggregate size, the greater the amount of cracks in polymers. The the bonds well before molecular destruction. the degree of porosity in glass with its optical strength a in laser 12.760 /5.7XX 1B An experiment is briefly described which attempted to correlate Lowered offical strength of transparent solids with macro-Geguzin, Ya. Ye., A. K. Yemets, and Yu. I. Boyko. scopic defects. FTT, no. 5, 1972, 1565-1566. 89 Molecular (i,i)

Doyke, Yu. I., and A. K. Yemeta. Study of lises and content for attail-halide single crystalls, according to data on shift of the damage center. DAN, v. 206, no. 2, 1972, 119-122. Experimental results are described of laser damage Phenomena in KGL and KBs crystals, with the object of determining the	Militorov, Yu. N., V. A. Yanushkevich, and A. V. Sandulova. Change in electrical properties of Education of Education of Education of Education of Education, and ranged in length from the action of Education, and ranged in length from the action of Education, and ranged in length from axis, had a hexagonal cross section, and ranged in length from a ruby laser, with the laser beam normal to the crystal axis. Impact threshold which was in the range of 15 - 45 Mcm. The damage are recisivity variation MR on expract specimens as functions of whister are recisivity variation MR on expract specimens as functions of whister are recisivity variation in the imperature and initial p. Typical results at an exposure of the possible mechanisms considered for the alteration affect (photoelical crystal health p. lazoofficial desert formation is the most probable factor. Defect levels, estimated to reach to reach the most probable factor. Defect levels, estimated to reach the most probable factor. Defect levels, estimated to reach the seconds or levels.
--	--

USŚR

VOL'F, L. A., YEMETS, L. V., KONEV, Yu. Ye., KOTETSKIY, V. V., MEOS, A. I., and KHOKHLOVA, B. A., Leningrad Institute of Textile and Light Industry imeni S. M. Kirov; Leningrad Scientific Research Institute of Antibiotics

"Preparation of Physiologically Active Fibers With Ion-Fixed Preparations"

Riga, Fiziologicheski i Opticheski Aktivnyye Polimernyye Veshchestva, "Zinatne," 1971, pp 159-165

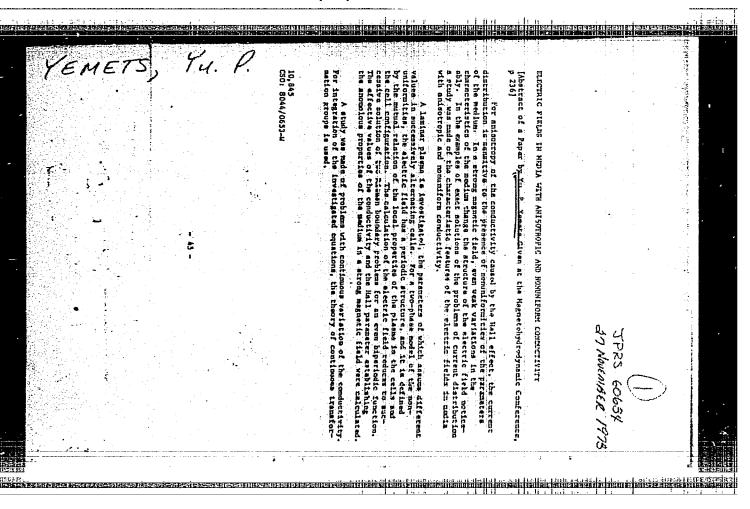
Abstract: Sorption of colimycin, novocainamide, and brilliant green by modified polyvinyl alcohol (PVA) fibers containing sulfo and carboxyl functional groups was studied, with the aim of preparing physiologically active materials with antimicrobial, anti-inflammatory, and anesthetic properties. The best sorption of brilliant green and novocainamide took place on fibers with -COOH group in the salt (Na) form. The carboxyl group in H-form dissociated very little in acid solutions, but the same group in the salt (Na) form was ionized in a wide pH range. Similar results were obtained with colimycin. The sulfo group dissociated equally well in all media. Therefore, there were no significant differences in sorption of the above preparations on sulfoexchangers either in acid or salt form. Excess of preparations (1-1.5 fold) in solution and larger absorbing surface of fibers were of importance. A difference in

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

VOL'F, L. A., et al., Fiziologicheski i Opticheski Aktivnyye Polimernyye Veshchestva, "Zinatne," 1971, pp 159-163

the sorption rate of the above preparations by fibers with carboxyl groups in H- or salt (Na) form is attributed to a greater swelling of the salt exchanger (Na especially) in comparison with H-form. In experiments with animals it was shown that presence of an ionic bond between fibers and medicinal preparations makes the textile material more stable toward bacteria, as opposed to ordinary impregnation of fibers with antibiotics. Catgut and natural silk treated with colimycin preserved their antimicrobial properties 8 days after their presence in soft itssues of rabbits. This is attributed to the formation of electrovalent and hydrogen bonds between antibiotics and peptides.


2/2

91 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

"APPROVED FOR RELEASE: 09/01/2001

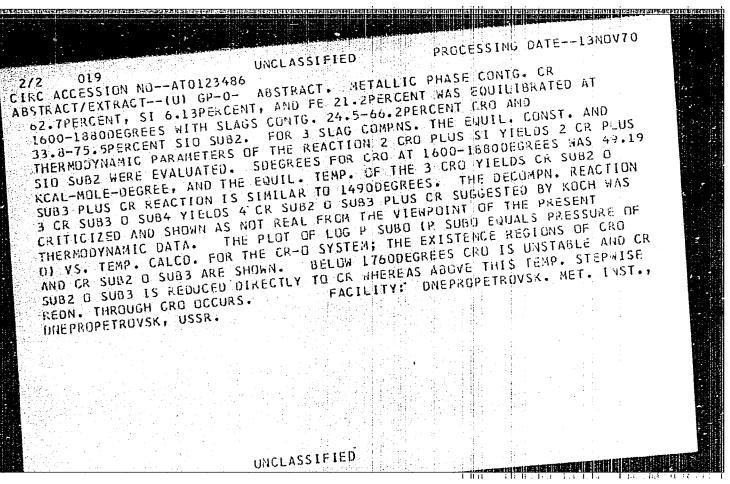
CIA-RDP86-00513R002203630006-9

USSR

UDC 577.4

YEMIN, S. V.

"On the Problem of Constructing Tests for Combination Logic Circuits"


Vychisl. tekhn. v mashinostr. Nauch.-tekhn. sb. (Computer Technology in Machine Building. Scientific and Technical Collection), 1971, June, pp 193-200 (from RZh-Matematika, No 1, Jan 73, abstract No 1V635 by Kh. Madatyan)

Translation: Preceding papers by this author have described an algorithm for constructing verifying tests for combination logic circuits without branchings. In this paper the algorithm is generalized for extension to circuits with branchings. It is assumed that the circuit is comprised of AND, OR, NAND, and NOR elements. A test is synthesized for a circuit with a single input; for circuits with several outputs, the proposed algorithm enables construction of a test for the entire circuit simultaneously. As the author points out, the given algorithm is readily programmable, and can be applied to large circuits (several dozen inputs and several hundred elements).

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

TITLE--THERMODYNAMICS OF THE REDUCTION OF CHROMIUMIE GXIDE BY SILICON -U-PRUCESSING DATE-- 13NOV70 AUTHOR-(03)-GASIK, M.I. YEHLIN, B.I., KHITRIK, S.I. COUNTRY OF INFO--USSR SOURCE--IZV. VYSSH. UCHEB. ZAVED., CHERN. MET. 1970: 13(3), 59-62 DATE PUBLISHED ---- 70 SUBJECT AREAS -- MATERIALS, CHEMISTRY TOPIC TAGS--THERMODYNAMICS, SILICON, CHROMIUM GXIDE, CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1648 STEP NO--UR/0148/70/013/003/0059/0062 CIRC ACCESSION NO--ATO123436 UNGLASSIF NED

USSR

UDG 669.71.053.24(088.8)

KHITRIK, S. I., GASIK, M. I., VUKOLOV, YE. A., KLICKOVICH, N. A., PORADA, A. N., LAGUNOV, YU. V., POLONSKIY, S. M., IORDANOVA, Z. A., MALYSHEV, V. I., YEMIN, B. I., KASHKUL, V. V., MASHKOV, V. P. TSEYMAKH, N. L., YEM, A. P., CHERNYSH, F. I., and KOLNOGUZENKO, V. A., Dnepropetrovsk Metallurgical Institute

"Method of Smelting Abrasive Electrolytically Produced Corundum"

USSR Author's Certificate No 263635, filed 15 Oct 65, published 10 Jun 70 (from RZh-Metallurgiya, No 11, Nov 70, Abstract No 11 G101 P)

Translation: A method is proposed for smelting abrasive electrolytically produced corundum in a thermal furnace which involves deep fusion of alumina-containing charge with reducing agents. To increase the abrasive properties of corundum and to obtain in it a Ti oxide content of 1%, smelting is carried out on kaolin presintered with Fe-ore additive or scale in the amount of 20-30 wt % of the charge.

1/1.

- 30 -

USSR

UDC 669.712.4

GASIK, M. I., YEMLIN B. I., KLIMKOVICH, N. S., and KHITRIK, S. I.

Electric Smelting of Aluminosilicates (Elektroplavka alyumosilikatov), Moscow, "Metallurgiya" Press, 1971, 304 pages, 62 illustrations, 92 tables, 329 bibliographic references

Translation of Annotation: The book is an attempt to correlate the results of new theoretical and experimental (both laboratory and production-scale) studies performed by the authors on methods for processing aluminosilicates to electrolytic corundum, technical-grade alumina, aluminum alloys, ferrosilicon, refractories, and other materials. A critical comparative analysis of related works (and their results) by other researchers in aluminosilicate applications is presented. The book is intended for the engineering, technical and scientific personnel of nonferrous and ferrous metallurgy, and the chemical and abrasives industries engaged in electrothermics. It may also be useful to students of higher and secondary educational institutions specializing in the field of electrothermics of inorganic materials.

Table of Contents

Foreword 1/3

Page 6

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

J ÉTYT				
	USSR			
	OACTT			
-	GASIK, I	M. I., et al., Electric Smelting of Aluminosilicates (Elekt	troplavka	
	ary umos.	TILKALOV, MOSCOW, "Metallurgiva" Proce 1071 20/ page /	62 illus-	l
	LISTIONS	s, 92 tables, 329 bibliographic references		
	Introduc			
	Ch. 1.	Physicochemical Properties of Aluminosilicates	7	
	Ch. 2.	Ore Formations of Aluminosilicates, Methods of	16	J
		Enrichment, and Industrial Applications	4.0	ļ
	Ch. 3.	Industrial Methods of Preparing Kaolins for Smelting	42	1
		In Liectric Furnaces in the first of the fir	67	ļ
	Ch. 4.	Physicochemical Conditions for Reducing Aluminosilicate	07	
		어 Uxides : 이 이 등 이 가는 하는 듯 있는 그를 통해 불편되었다. 그를 찾아 보고 있는 모든	75	I
4	Ch. 5.	Smelting of Electrolytic Corundum From Aluminosilicates	118	. •
	Ch. 6.	Concemporary Techniques of Producing Aluminum and Ite	*TO	
		Alloys by Electrothermic Methods	149	Į.
	Ch. 7.	Production of Ferro-Silicoaluminum Without the Use of		
	nL 0	Alumina of the control of the contro	174	
	Ch. 8.	Production of Technical-Grade Alumina From Aluminosili-		
	Ch. 9.	- Cates - Cate	215	
1	ui. J.	Smelting Metallurgical Electrocorundum and Production		
e transfer Staden de la se	2/3	of Aluminocalcium Synthetic Slags	227	
4	413			

,		ara and Market by	SCHOOL HEROSEIE				11 E11 650 7 10 12 12 11 26 23 6 10 11 5		
	.					• :			
	USSR								
	GASIK, M	l. I., et	al., El	ectric Sme	lting of A	uminosil	icates (E1	ektroplavka	
					rgiya" Pres phic refere		304 pages	ektroplavka , 62 illus-	
	Ch. 10.	Abrasiv	e Produc	ts From Ka	olin-Base E	lectroco	rundum	237	
	Olio II.	Fabricat	tion of I	Kaolin Sme Refractori	lting Produ	cts for t	he	271	
	Ch. 12.	recurres	ar and E	conomic Ra	roduced Fro ting of Com	m Kaolin bined Uti	lization	287	
	Reference	AT WYTHIN	THOSTTIC	aces	147, 171, 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second	293	
						,	250, 271,	200, 292	
							• '		
							• · · · · · · · · · · · · · · · · · · ·		
								· · · · · · · · · · · · · · · · · · ·	
	3/3								

USSR

UDC 669.71.053.24(02)

GASIK, M. I., YEMLIN, B. I., KLIMKOVICH, N. S., and KHITRIK, S. I.

"Electrosmelting of Aluminosilicates"

Elektroplavka alyumosilikatov (cf. English above), Moscow, "Metallurgiya" (Metallurgy), 1971, 304 pp, ill, 1 r. 5 k. (from RZh-Metallurgiya, No 1, Jan 72, Abstract No 1G114K from summary)

Translation of Abstract: The book summarizes the authors' original theoretical and experimental laboratory and industrial experiments in aluminosilicate processing according to a scheme devised for the purpose of obtaining synthetic corundum, commerical Al₂O₃, Al alloys, Fe-Si, refractories, and other products. A critical comparative analysis is presented of the published results of the investigations of other authors in the field of aluminosilicate utilization. Sixty-two illustrations. Ninety-two tables. Bibliography with 329 titles.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

THE REPORT OF THE PROPERTY OF

USSR

UDC 532.543

YEMTSEY B. T., DO-TKHAN'-KUA

"Method of Calculating the Bank on a Chute"

Tr. Mosk. energ. in-ta (Works of Moscow Power Engineering Institute), 1971, No. 85, pp 15-23 (from RZh-Mekhanika, No 12, Dec 71, Abstract No 12B943)

Translation: The problem of the application of an approximation method previously proposed by the authors for the hydraulic calculation of curved transition segments of open water collectors to a calculation of the bank on a chute is discussed (Tr. koordinats. soveshchaniy po gidrotekhn. (Works of the Coordination Conference on Hydraulic Engineering), 1969, No. 52, pp 65-74 -- RZhMekh, 1970, Abstract No 5B683). The method was used to calculate and test at the laboratory two hydraulic models of banks with angles of turn in plan of 6 = 23° and 40° on flumes of shutes with longitudinal inclinations of the bottom of $i_0 = 0.1$ and 0.2. Velocity distribution curves (in plan) and transverse profiles of water levels measured at various ranges of both models are given and they provide some basis for stating that this method of calculation is applicable at $\theta_0 \leq 25^\circ$ and $i_0 \leq 0.1$. V. B. Dul'nev.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC 664.8/.9

"Some Biological Properties of Clostridium Isolated From Foodstuffs During Canning"

Moscow, Biologicheskiye Nauki, No 12, 1971, pp 92-99

Abstract: Comparative studies of the morphological, cultural and physiological properties of Cl. perfringens with ten other Clostridium species isolated from foodstuffs were conducted. Some of the characteristic properties of Cl. perfringens which distinguish it from other butyric acid bacteria include immobility and reaction to litmus milk at a temperature of 46°C, intensive growth, ability to accumulate nitrites in a medium, rapid growth in the Wilson and Blair medium, specific growth in the Willis and Hobbs medium, and liquefaction of gelatin. In addition, none of the strains of Cl. perfringens fermented mannite or dulcite. Based on these properties, Clostridium perfringens can be isolated from other butyric acid bacteria during microbiological inspection of food products.

1/1

- 14 -

entries en martin de la completa de Completa de la completa del completa de la completa de la completa del completa de la completa del la completa del la completa de la completa de la completa de la completa de la completa del la completa de la completa del la completa della del la completa della della completa della com

Coatings

USSR

UDC: 546.831+546.821.824

YEMYASHEV, A. V., KILIN, V. S., MARTYNOV, S. Z., and SHAROVA, A. V.

"Pyrolytic Nitrides of Titanium and Zirconium and Areas of Their Application"

Moscow, Tsvetnyye Metally, No. 12, Dec 70, pp 30-32

Abstract: Data on the deposition of titanium and zirconium nitrides from the gas phase are discussed. Use was made of commercial zirconium and titanium tetrachloride, hydrogen, and nitrogen. The process of deposition of zirconium pyronitride takes place at 1400-2000°C, with the deposition rates sufficiently high to obtain coatings of appropriate thickness. The most favorable conditions for depositing zirconium pyronitride are attained at a molar ratio of initial components of ZrCl₄:N₂:H₂=1:3:2. The temperature may be varied within 1700-2000°C. A table in the original article indicates the same processing relationships and specifications for titanium

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

YEMYASHEV, A. V., et al, Tsvetnyye Metally, no. 12, Dec 70, pp 30-32

pyronitride. The maximum deposition rate, however, was observed at 1600... 1700°C. The decrease in the deposition rate with an increase in temperature is related to the fact that the titanium pyronitride deposition rate becomes commensurable with the vaporization rate. It was also found that the deposition rate of pyronitrides is directly proportional to the effective cross section of the vapor-gas mixture in the reaction zone. The high electroconductivity of titanium and zirconium nitrides permits their use in special areas of electrical engineering and electronics. The superconductivity of zirconium nitride makes it a potential material for subzero-temperature technology. High melting temperatures and good refractory properties make these materials suitable for use as strengthening components. The method of deposition from the gas phase may be used for applying refractory coatings to parts of intricate configuration.

2/2

16 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC 616.936.3-036.87

PERSHIN, Ye. Ya., and YEMYASHEVA. L. I. Uzbek Scientific Research Institute of Experimental Medical Parasitology and Helminthology and Samarkand Oblast Sanitary Epidemiological Station

"Late Recurrences of Quartan Malaria"

Moscow, Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6, 1970, pp 738-739

Translation: Quartan malaria has never been very prevalent in Samarkand Oblast, Uzbek SSR. The incidence of this form of malaria did not exceed 0.6% in 1943-1944. Most of the cases were recorded in the Narpayskiy group of rayons. Only sporadic cases have been recorded in the oblast since 1953, and during the period of virtual eradication of the disease (Bince 1960) only three cases each were detected in 1960 and 1962. After a 5-year break two cases were recorded in 1968. Both patients became sick in Narpayskiy rayon.

Patient Yu., 30 years of age, living in the village of Altykush (Uzbekistan kolkhoz), was hospitalized on 18 April 1968 in the department of contagious 1/5

USSR

PERSHIN, Ye. Ya., and YEMYASHEVA, L. I., Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6, 1970, pp 738-739

disease (headed by Farmanova) of the rayon hospital with a diagnosis of epidemic cerebrospinal meningitis. The diagnosis was confirmed after a spinal tap and the symptoms were characteristic of the disease.

Upon admission, the patient's temperature was 39°C and remained elevated for several days. After treatment with antibiotics and sulfanilamides, the temperature returned to normal. The temperature again rose on the following days: to 37.8°C on 26 April, to 37.5°C on 5 May, to 37.2°C on 11 May, to 37.8°C on 14 May. Examination of a drop of blood taken on 14 May revealed schizonts of the agent of quartan malaria (confirmed by Z. S. Shishlyayeva-Matova at the Uzbek Scientific Research Institute of Medical Parasitology). The patient was treated with acrichine plus plasmocid and then with quinocide. She was discharged on 3 June in good condition.

The patient said she had not been sick during the past 10 to 15 years or received any blood transfusions, nor did she travel out of the area during this time. According to the records of the district feldsher, she did not

CIA-RDP86-00513R002203630006-9"

APPROVED FOR RELEASE: 09/01/2001

USSR

PERSHIN, Ye. Ya., and YEMYASHEVA, L. I., Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6. 1970, pp 738-739

receive outpatient treatment during the same period of time. Relatives said that 15 years ago everyone in the village, including patient Yu., developed febrile diseases.

Examination of the inhabitants of the village (210 persons) and blood taken from 20 to 22 May 1968 failed to reveal any other parasite carriers. No imaginal or larval stages of the mosquito vector were found in the houses or in hodies of water within a radius of 3 km around the village.

Patient B., 54 years of age, living in the village of Kara-Tepe (Sverdlov kolkhoz), came to the rayon hospital with complaints of elevated temperature, chills, and headache. She thought that she had been sick since early April 1968, when she was hospitalized with complaints of head cold, elevated temperature, and headache (diagnosis: acute inflammation of the upper respiratory tract). Blood was examined twice for malaria but no parasites were found. Thereafter she felt febrile twice but did not seek medical care.

3/5

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

PERSHIN, Ye. Ya., and YEMYASHEVA, L. I., Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6, 1970, pp 738-739

Examination of the liver showed it to be enlarged by 4.5 cm, with the spleen extending to the lesser pelvis, an indication of the long duration of the process. Blood was analyzed for malaria on 28 September and various stages of the causative agent of quartan malaria were found (schizonts, merozoites). The parasitological diagnosis was confirmed at the Uzbek Scientific Research Institute of Experimental Medical Parasitology and Helminthology.

The patient said she had not had any febrile diseases in recent years (the district hospital had no record of her having been there during the previous 3 years). She did not remember ever having had malaria or receiving blood transfusions. In 1968 she traveled to the settlement of Khatyrchi, but this locality has not been a focus of malaria for the past 10 years. Examination of 108 persons from the village of Kara-Tepe and their blood on 1 December 1968 failed to reveal any other person suffering from malaria or acting as a parasite carrier. A. pulcherrimus larvae were caught in June 1968 in bodies of water in and around the locality, however no imaginal stages were found in the dwellings throughout the season.

4/5

USSR

PERSHIN, Ye. Ya., and YEMYASHEVA, L. I., Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6, 1970, pp 738-379

It is reasonable to assume that both patients experienced late recurrences of quartan fever that was provoked by acute infection - by epidemic cerebrospinal meningitis in the first case and by an acute inflammation of the upper respiratory tract in the second. Our observations should alert clinicians and especially medical workers in regions where quartan malaria was once prevalent.

5/5

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR UDC: 538.574.6

YENA, A. I., LITVINENKO, L. N., and SHESTOPALOV, V. P., Khar'kov Institute of Radio-

"Diffraction of Electromagnetic Waves by Multi-element Arrays"

Gor'kiy, Izvestiya Vysshikh Uchebnykh Zavedeniy: Radiofizika, Vol 13, No 6, 1970, pp 913-924

Abstract: The authors study the diffraction of a plane electromagnetic wave by a multi-element array. The structure of the array consists of an infinite sequence of periodically spaced groups of strips, with n number of strips in each group. It is shown that these arrays have important characteristics with respect to practical application. These characteristics consist of the array's transparency to H-polarized waves in a broad range of frequencies, while being analogous to a simple element array with the same period in the case of E-polarization. An approximate method is proposed for calculating array diffraction fields using equivalent boundary conditions. The results of these calculations are compared to a precise solution obtained for a case involving an array with a five element period. Original article: five figures, one table, 19 formulas, and 13 bibliographic entries.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC: 621.396.677

YEHA, A. I.

"Diffraction Fields in the Fresnel Zone on Gratings of Special Shape"

Radiotekhnika. Resp. mezhved. nauch.-tekhn. sb. (Radio Engineering. Republic Interdepartmental Scientific and Technical Collection), 1970, vyp. 13, pp 122-129 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 584)

Translation: The amplitude and phase distributions of the E-field are constructed for a symmetric five-element grating, and for an asymmetric two-layer two-element grating. It is shown that the desired field configuration can be obtained in the short-range zone; the fields are analyzed for a wavelength equal to the lattice period; these fields are compared with those of single-layer gratings. Three illustrations, bibliography of four titles. Resumé.

1/1

17 =

and the control of th

UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--POLYMERIZATION OF VINYL MONOMERS IN LAYER COMPOUNDS OF
MONTMORILLONITES -UAUTHOR-(04)-ZAYISEV, YU.S., KISEL, N.G., YENALYEV, V.D., YURZHENKO, A.1.

GOUNTRY OF INFO--USSR

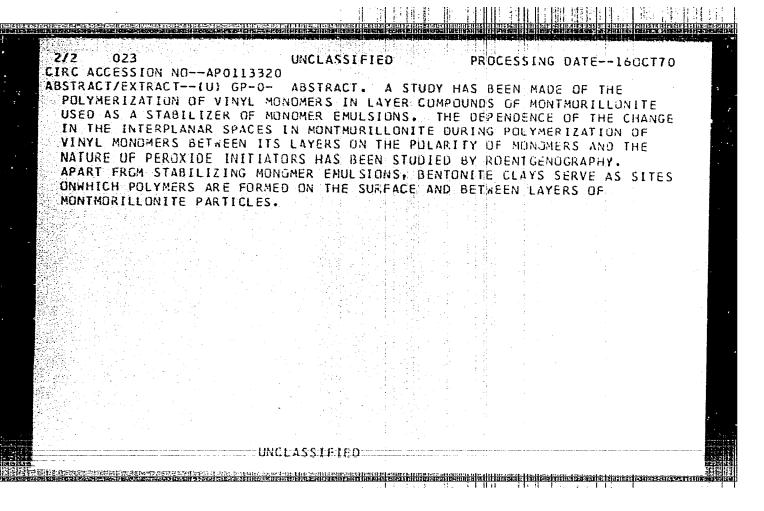
SOURCE--KOLLOIDNYY ZHURNAL, 1970, VOL 32, NR 2, PP 213-217

DATE PUBLISHED-----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--POLYMERIZATION, MONOMER, VINYL COMPOUND, PEROXIDE, MINERAL, CHEMICAL STABILIZER

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0402

STEP NO--UR/0069/70/032/002/0213/0217

CIRC ACCESSION NO--APUL13320

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

UNCLASSIFIED PROCESSING DATE--160CT70

16, NR 3, PP 310-316

TITLE-FATTY ACIDS CONTENT OF BLOOD SERUM LIPIDS AT ATHEROSCLEROSIS -U-

AUTHOR-(02)-ALIMOVA, YE.K., YENDAKOVA, E.A.

COUNTRY OF INFO--USSR

SOURCE-VOPROSY MEDITSINSKOY KHIMII, 1970, VO

DATE PUBLISHED ---- 70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--FATTY ACID, BLOOD SERUM, LIPID, ATHEROSCLEROSIS, CHOLESTEROL, HYPERTENSION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0179

STEP NO--UR/0301/70/016/003/0310/0316

CIRC ACCESSION NO--AP0120878

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

UNCLASSIFIED PROCESSING DATE--160CT70 2/2 CIRC ACCESSION NO--APOL20878 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE AIM OF THE PRESENT WOEK WAS THE STUDIES OF FATTY ACID CONTENT OF BLOOD SERUM PARENT LIPIDS AND FOLLOWING FRACTION: CHOLESTEROL ESTERS, TRYGLYCERIOES, NONESTERIFICATED FATTY ACTOS NOTH IN HEALTHY MEN AND IN PATIENTS WITH ATHEROSCLEROSIS BY MEANS OF GAS LIQUID CHROMATOGRAPHY THE STUDY WAS CONDUCTED ON 35 PATIENTS 45-49 YEARS OLD WITH INFANCTION CAUSED BY HYPERTENSION AT II-III STAGES. HYPERTENSION WAS COMPLICATED BY CORONARY ATHEROSCLERGISIS. 40 HEALTHY MEN WERE USED AS A CONTROL. WITH ATHEROSCLEROSIS THE FALL IN UNSATURATED FATOY ACIDS CONTENT OF BLOOD SERUM LIPIDS WAS DEMONSTRATED. THE CHARACTERISTIC FEATURE IN CHANGES OF ACID SATURATION IS THE SHARP DECREASE IN LINOLEIC ACID CONTENT INSERUM LIPIDS, THE FALL IN ARACHIDONIC ACID LEVEL, AND INCREASE IN EUCOSETRIENIC ACID. THE BASIC ACIDS OF CHOLESTEROL ESTERS WERE OLEIC IN PATIENTS WITH ATHEROSCLEROSIS THE CONTENT OF AND LINGLEIC ACIDS. SATURATED AND MONOENIC ACIDS WAS INCREASED, BUT THE FALL IN LINGLEIC TRIGLYCERIDES FRACTION OF BLOUD SERUM OF ACID LEVEL WAS DEMONSTRATED. HEALTHY MEN WAS CHARACTERIZED BY THE INCREASED CONTENT OF PALMIC AND THE PATIENTS WITH ATHERUSCLERUSIS WERE CHARACTERIZED BY OLEIC ACIDS. ELEVATED LEVEL OF SATURATED AND MONDENIC ACIDS AND BY THE DECREASE IN LINOLEIC ACID CONTENT. MONESTERIFICATED SERUM FATTY ACIDS MOSTLY CONTAIN PALMIC AND OLEIC ACIDS. IN PATIENTS WITH ATHEROSCLEROSIS THE CONTENT OF TRIENIC ACIDS IS INCREASED AND THAT OF MONDENIC IS DECREASED. THE MOST PRUNDUNCED INCREASE WAS NOTED IN CASE OF ACIDS WITH UNEVEN FACILITY: CHAIR OF BIOCHEMISTRY MEDICAL CARBON ATOMS. INSTITUTE, VLADIVOSTOK. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

randamiranidaksindaksilankerirmen simen curesinkum simen miruban i minne mankerir seseti ci engiled irongel k

USSR

UDC: 53.07/.08+53.001.5

YENDOVITSKIY, V. S., KIMEL', L. R., MOKHOV, N. V.

er kod kapert "ako lipiku kod horol era yinin likoli ki bukin buhpi buku buku bilin hini buli baluku bili kaba

"An Analytical Method of Calculating a Nucleon-Meson Cascade at High Energies of the Order of $1-10^3~{\rm GeV}$ "

V sb. Vopr. dozimetrii i zashchity ot izluch. (Problems of Dosimetry and Radiation Shielding--collection of works), vyp. 12, Moscow, Atomizdat, 1971, pp 15-23 (from RZh-Fizika, No 4, Apr 72, Abstract No 44732)

Translation: A numerical method is proposed for calculating nucleon-meson cascades with regard to scattering in inelastic hadron-nucleus interactions. The method gives the function of spectral-angular distributions of particles in a cascade initiated in shielding materials by broad beams of high-energy hadrons in the small-angle approximation.

1/1

USSR

ABOVSKIY, N. P., AZARKHIN, A. M., YENDZHIYEVSKIY, L. V., PAS'KO, D. A.,

"On the Calculation of Convex Polyhedra With Plane and Curved Ribbed Panels"

V sb. Prostranstv. konstruktsii v Krasnoyarsk. kraye (Three-Dimensional Structures in the Krasnoyarsk Region — Collection of Works), Krasnoyarsk, 1972,

pp 20-27 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3V116)

Translation: Variational formulations of the problem in displacements and in mixed form using stress and bending functions are discussed for convex multipanel of the system is represented as a variety of a shell of variable thick-

7/7

USSR

UDC 539.3

YENDZHIYEVSKIY, L. V., LARIONOV, A. A.

"Calculation of Hollow Multisided Ribbed Shells by the Finite Difference Method"

V sb. Prostranstv. konstruktsii v Krasnoyarsk. kraye (Three-Dimensional Structures in the Krasnoyarsk Region — Collection of Works), Krasnoyarsk, 1972, pp 51-59 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3V118)

Translation: Structural designs of assembled plane ribbed elements having the shape of a polyhedron inscribed in a spherical or circular surface are discussed. Bending in the normal plane and longitudinal deformation is taken into account for ribs eccentrically conjugate with the plate. Difference equations were obtained from the Lagrange variation equation for the multicontact problem. The solution is given in the linear formulation in displacements.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR

UDC 632.954:631.17

YENENKO, I. I., Yershovskaya Experimental Station of Irrigated Agriculture, Scientific Research Institute for Southeastern Agriculture

"Destruction of Weeds on Irrigated Corn Plantings in the Transvolga Region"

Moscow, Khimiya v Sel'skom Khozyastve, Vol 10, No 5, 1972, pp 43-45

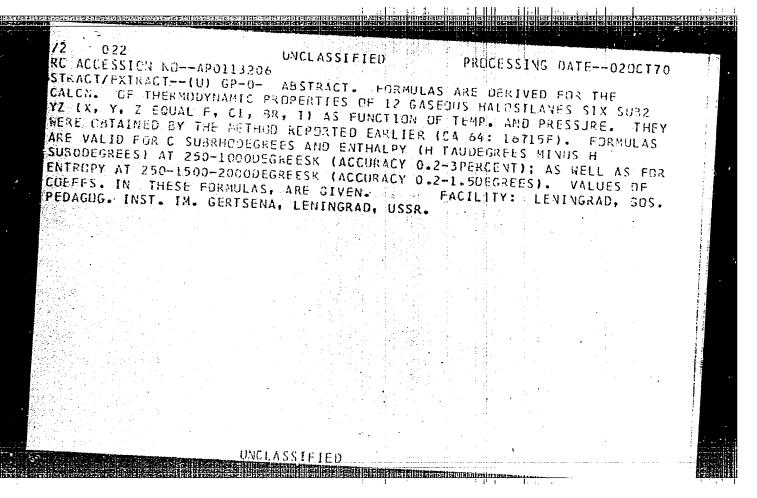
Abstract: Tests were made over 4 years at the station to determine the effectiveness of agricultural techniques in combination with the herbicides 2,4-D (amine salt) and 2M-4CM (sodium salt) for controlling weeds in corn. The soil was dark chestnut clay loam, pH 8.2, containing 4.1% humus. The herbicide was applied at the 4-5 and 6-7 leaf stages of the corn, when it would not suppress corn growth. Shoot-producing weeds were greatly retarded by the herbicides in the stem forming stage, when the herbicides killed 80% and more. The amaranthus weed was most effected by 2,4-D, with about 80% kill, but it soon became resistant so that only around 50% or less kill was achieved. Optimum dosages of 2M-4CM proved to be 2 and 3 kg/ha in the 4-5 and 6-7 leaf stage of the corn, and of 2,4-D, 1.5 and 2 kg/ha in the respective corn stages. The dicotyledonous weeds were most sensitive to the herbicides in the stemming phase, while the amaranthus weed was best controlled in the 3-4 leaf phase of growth. On irrigated plantings the most 1/2

USSR

YENENKO, I. I., Khimiya v Sel'skom Khozyastve, Vol 10, No 5, 1972, pp 43-45

effective and economically profitable technique proved to be twice repeated cultivation in combination with thorough spraying of the plantings with a solution of 2M-4CM after the first cultivation, using 3 kg/ha.

2/2


53 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

AN 0104560-Acc. Nr.: Ref. Code: UR 9015 AUTHOR --YENEVICH. BORISH CORRESPONDENT TITLE --MYSTERIES OF THE "WEATHER KITCHEN" NEWSPAPER -- RABOCHAYA GAZETA, JUNE 11, 1970, P 4, COLS 2-6 ABSTRACT-- THE "AKADEMIK VERNADSKIY", A RESEARCH SHIP OF THE SOVIET ACADEMY OF SCIENCES, HAS LEFT THE SEVASTOPOL FOR THE TROPICAL AREA OF THE ATLANTIC WHERE SHE WILL JOIN THE "DMITRIY MENDELEYEV" AND THE *AKADEMIK KURCHATOV*, RESEARCH VESSELS OF THE OCEANOLOGICAL INSTITUTE. THE EXPEDITION IS HEADED BY CANDIDATE OF GEOGRAPHICAL SCIENCES PAVEL PAVLOVICH GANSON AND HIS DEPUTY, CANDIDATE OF GEO-GRAPHIC SCIENCES YUVENALIY GEORGIYEVICH RYZHKOV. THE MISSION OF THE EXPEDITION IS TO EXPLORE THE PRINCIPAL METEOROLOGICAL PROCESSES WHICH ARE RESPONSIBLE FOR CLIMATIC CONDITIONS OF THE WESTERN ASIATIC AND NORTHERN EUROPEAN PARTS OF THE SOVIET UNION. THE "SERGEY VAVILOU" AND THE "PETR LEBEDEV", SHIPS OF THE ACOUSTICAL INSTITUTE, THE "PROFESSOR VIZE" AND THE "PROFESSOR ZUBOV", WEATHER SHIPS OF THE HYDROMETEOROLOGICAL SERVICE, AND THE "HUSSON" AND THE "PASSAT" WILL PARTICIPATE IN THE EXPEDITIONARY WORK. REEL/FRAME 19871194 nu 12

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

2. 022 UNC LETHERMODYNAMIC FUNCTIONS (170
FERRAL (05) - MASLOV, P.S., USVYATELE, YENGALYCHEV, YU.S.	ITSEVA. T.R	., BOYKO	, V.J., KAR	aTNIKOVA,	
IRCEZH. FIZ. KHIM. 1970, 44	(3), 825				da eden Me nesses
E PULLISHED70					The me and distance.
SJECT AREASCHEMISTRY, PHYSIC	S				
TE TAGSTHERMODYNAMIC FUNCT	ION, SILANE	, SILICON	COMPOUND,	GAS STATE	•
TROL MARKINGNO RESTRICTIONS					
UMENT CLASSUNCLASSIFIED XY REEL/FRAME1993/0276	STEP NO-	-UR/0076/	770/044/003	/0825/0825	
C ACCESSION NOAPOLIBED UNGLAS	SIFIED			· · · · · · · · · · · · · · · · · · ·	
	belifference of the state of th	511-11-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	iii. Arataileilella lavessa istisatta	***************************************	7.05 DED 1988

USSR

UDC 639.311:663.632.8

YEMASHEV. V. G., Candidate of Veterinary Sciences, Central Laboratory of the Ichthyopathological Service, Ministry of Pish Economy RSFSR, KOZLOV, Ye, I., Candidate of Technical Sciences, VNIISKASPGA All Union Scientific Research Institute of Agricultural and Special Use of Civil Aviation, and AFANAS'YEV, V. I., Candidate of Veterinary Sciences, Krasnodarskiy Scientific Research Institute of Pond Fishery, Ministry of Fish Economy RSFSR
"Disinfection of Fish Ponds From Airplanes"

Moscow, Rybnoye Khozyaystvo, No 3, Mar 71, pp 29-30

Abstract: In 1967, fisheries in the Moscow region began to use agricultural AN-2 airplanes for disinfecting ponds with lime. In 1969, fisheries in Krasnodarskiy Kray equipped an AN-2 plane with a different spray mechanism and obtained much better results. The rate of spray reached 42 kg of lime per second (previously, 18-20 kg/sec), and the strip covered per run was also considerably wider: 8-10 meters at an altitude of 4 m; 12-13 m from an altitude of 10m; and 15-16 m from an altitude of 15 m. For most purposes, an altitude of 10-15 m is recommended; it should be lowered to 5 m on windy days or when it is desirable to deliver a larger amount of the disinfectant per unit surface area. The spray mechanism was designed by the VNIISKhSPGA, and it can be easily installed in the AN-2 plane.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

USSR UDC 523.035.2

FINCIBARYAN, N. B. and NIKOGOSYAN, A. G., Institute of Mathematics, and Byurakan Astrophysical Observatory (both under the Armanian Academy of Sciences)

"Diffuse Reflection of Resonance Radiation From a Semi-Infinite Medium"

Yerevan, Doklady Akademii Nauk Armyanskoy SSR, LIV, No 2, 1972, pp 91-95

Abstract: Because of its complexity, the problem of radiation transfer in spectral line frequencies has usually been attacked with the simplifying assumption of total frequency redistribution; but this assumption contradicts both the dependence of redistribution on scattering angle, and the presence of correlation between frequencies of absorbed and reradiated quanta.

A mathematical basis for future development of an effective solution of the problem of diffuse light reflection from a homogeneous semi-infinite medium is worked out, using V. A. Ambartsumyan's invariance principle. Due allowance is made for noncongruence and anisotropy of an elementary act of scattering. The study is an extension of the authors earlier work, in which a strict examination of noncongruent scattering was undertaken, along with consideration of the redistribution-scattering angle relationship.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630006-9"

UNCLASSIFIED PROCESSING DATE--090CT70

TITLE-ON ONE PROBLEM OF THE RADIATION TRANSFER IN CONTINUUM -U-

AUTHUR-102)-VARDANYAN, R.S., YENGIBARYAN, N.B.

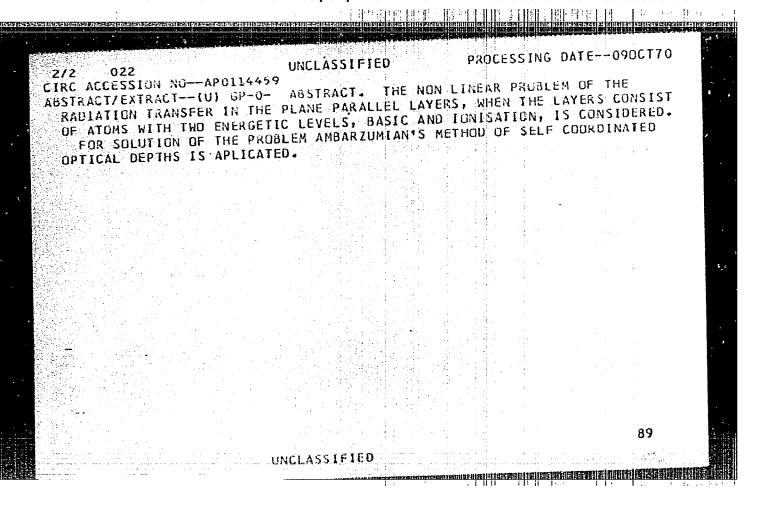
COUNTRY OF INFO--USSR

SOURCE-SOOBSHCHENIYA BYURAKANSKOY OBSERVATORII AKADEMIYA NAUK ARMYANSKOY SSR, 1970, NR 41, PP 91-98 PATE PUBLISHED----70

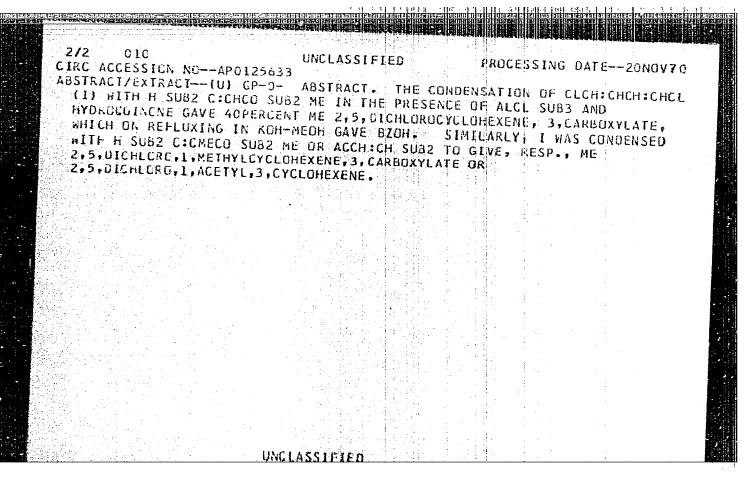
DATE PUBLISHED----70

SUBJECT AREAS-PHYSICS, ATMOSPHERIC SCIENCES

TOPIC TAGS-ATOM, IONIZATION, ATMOSPHERIC RADIATION


CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRUXY REEL/FRAME--1994/0063


STEP NU--UR/2620/70/000/041/0091/0098

CIRC ACCESSION NO--APOLIA459

UNCLASSIFIED

PROCESSING DATE-20NOV70 UNCLASSIFIED TITLE-CIENE SYNTHESIS WITH THE PARTICIPATION OF 1,4, DICHLORO, 1,3, BUTAGIENE -U-AUTHOR-1021-YENGTBARYAN, R.N., BABAYAN, V.O. COUNTRY OF INFO-USSR SOURCE-ZH. CRG. KHIM. 1970, 6(4), 675-7 (RUSS) DATE FUBLISHED ------ 70 SUBJECT AREAS-CHEMISTRY TOPIC TAGS-CHLORINATED URGANIC COMPOUND, BUTADIENE, ORGANIC SYNTHESIS, CYCLCHEXERE, CONDENSATION REACTION CONTROL MARKING-NO RESTRICTIONS STEP ND-UR/0366/70/006/004/0675/0677 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-2000/2045 CIRC ACCESSION NO--APO125633 UNCLASSIFIED

PROCESSING DATE--04DEC70 UNCLASSIFIED CIRC ACCESSION NO--APO131540 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. HYDRODYNAMIC STUDIES OF DISPERSED GAS LIQ. (AIR: WATER, AIR SATD.: CUSO SUB4 SOLN., BARERCENT CO SUB2 IN AIR 1.8N NAOH) AND GAS LIQ. SOLID (AIR SATD. CUSO SUB4 SOLN. CUSO SUB4 CRYSTALS) SYSTEMS WERE CONDUCTED IN A PLANAR (2-DIMENSIONAL) FOAMING APP. MODEL AT GAS VELOCITIES SMALLER THAN OR EQUAL TO 2.5 M-SEC. CHANGES IN THE SURFACES OF THE CONTACTING PHASES AND CHANGES IN STRUCTURE WERE FOLLOWED CINENATOGRAPHICALLY. THREE DISTINCT HYDRODYNAMIC REGIMES WERE IDENTIFIED WHICH VARIED WITH THE GAS VELOCITY H; AT LOW W, THE GAS WAS DISPERSED IN THE LIQ; AT INTERMEDIATE W, AN INVERSION OF PHASES OCCURRED AND CLUSTERS OF LIQ. DROPLETS AND GAS BUBBLES (VOIDS) WERE PRESENT; AND AT HIGH W. THE LIQ. WAS FULLY CHANGES IN THE GAS VOL. FRACTION, SP. CONTACTING DISPERSED IN THE GAS. SURFACE OF THE CLUSTER, AND PRESSURE DROP CHANGES IN THE LAYERS DETD. AS A FUNCTION OF TIME ARE DISCUSSED; TWO MODES OF GAS FILLING OF THE LIQ. CLUSTERS AND OF THE VOIDS WERE OBSO. AND ARE DISCUSSED. FACILITY: LENINGRAD. TEKHNOL. INST. IM. LENSOVETA, LENINGRAD, USSR. UNCLASSIFIED

1/2 008

TITLE--REVERSIBLE ELECTROCHEMICAL REDUCTION OF BETA CAROTENE AND RELATED

AUTHOR (03)

AUTHOR-(03)-MAYRONOVSKIY, V.G., YENGOVATOV, A.A., SAMOKHVALOV, G.I.

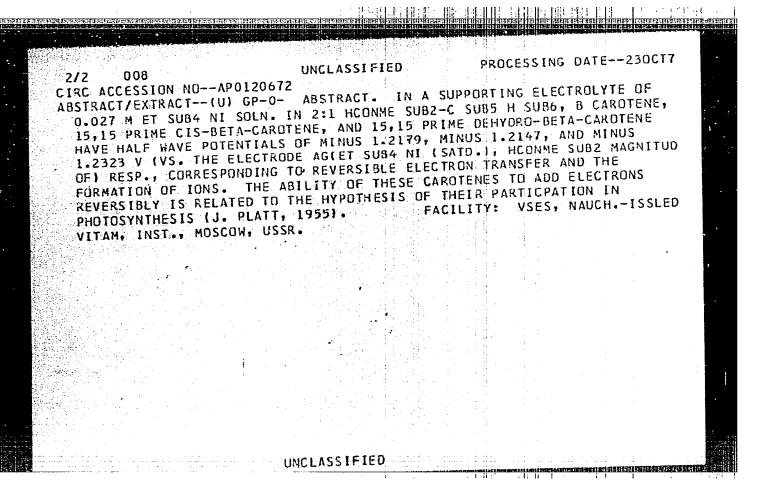
COUNTRY OF INFO--USSR

SCURCE--ZH. ORG. KHIM. 1970, 6(3), 632-3

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-BIOLOGIC PIGMENT, UNSATURATED HYDROCARBON, ELECTROLYTIC REDUCTION, ELECTRODE POTENTIAL, PHOTOSYNTHESIS


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/2029

STEP NO--UR/0366/70/006/003/0632/0633

CIRC ACCESSION NO--APO120672

UNCLASSIFIED

USSR

UDC 617-001.28-092.9-07: [616.155.3:576.858.095.383]-078

KAMALYAN, L. A., YENGOYAN, M. N., and VARTEVANYAN, Zh. Ts.

"Production of Leukocyte Interferon in Irradiated and Intact Dogs"

Moscow, Voprosy Virusologii, No 5, 1971, pp 552-555

Abstract: Leukocytes isolated from the peripheral blood of dogs and treated with Newcastle disease virus strain A produced interferon, whose activity varied with the dose of the interferon inducer, the number of leukocytes, and the time the leukocytes were used (freshly isolated cells were best, while refrigeration of cell suspensions for 24 and especially 48 hours markedly reduced their capacity to produce interferon). Single whole-body X-irradiation (400 r) significantly lowered interferon titers on days 2 and 7 after exposure in most of the dogs. A mild course of radiation sickness occurred in those animals in which irradiation did not impair the synthesis of leukocyte interferon. Analysis of interferon isolated from dogs before and after irradiation showed that it was identical in resistance to heating to 56°C for 30 minutes and sensitivity to trypsin.

1/1

UNCLASSIFIED PROCESSING DATE--160CT70

-UAUTHOR-(03)-YENIKEYEV, E.KH., KUZNETSOV, V.S., HSU, N.

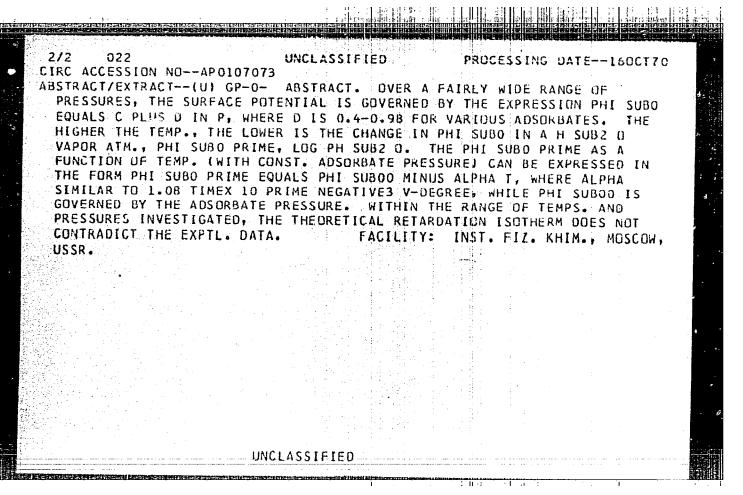
COUNTRY OF INFO--USSR

SOURCE--ELEKTROKHIMIYA 1970, 6(1), 49-56

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--GAS ADSORPTION, GERMANIUM, THERMAL EFFECT, PRESSURE EFFECT

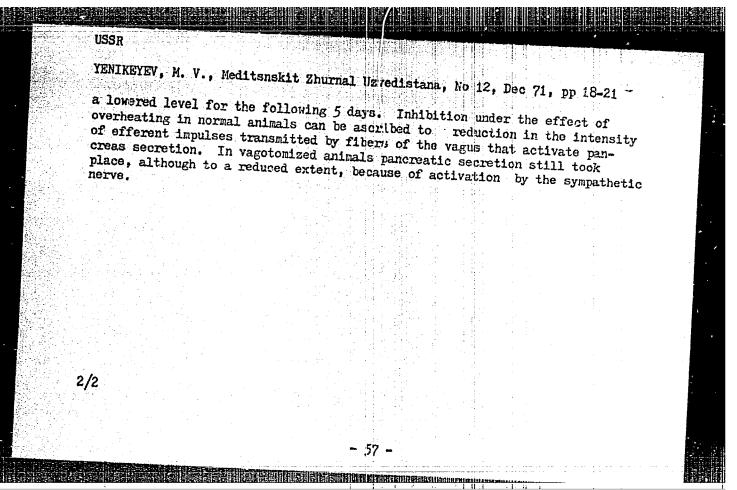

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0467

STEP NO--UR/0364/70/006/001/0049/0056

CIRC ACCESSION NO--APO107073

UNCLASSIFIED


USSR

YENIKEYEV, M. V., Candidate of Medical Sciences, Chair of Operative Surgery and Clinical Anatomy, Tashkent Institute of Advanced Training of Physicians,

"Experimental Data on Pancreatic Secretion Upon Bilaterial Vagotomy and Overheating"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 12, Dec 71, pp 18-21

Abstract: Dogs were subjected to bilateral vagotomy above the diaphragm. The pancreatic secretion of the bagotomized dogs was studied while keeping the animals at room temperature and then overheating them by exposure for 1 hour to sunlight in the summer (dry bulb temperature 33-41°C, wet bulb temperature 20-29°C, amount of solar radiation absorbed by the body surface 0.98-1.27 kcal/cm² per min). The pancreatic secretion of the vagotomized dogs kept at room temperature decreased vs. that of controls not subjected to vagotomy 89.1, 87.3, and 86.1% on the 5th, 6th, and 7th day after the operation, respectively. The composition of the pancreatic juice remained hour on the 8th day after the operation did not produce any changes in the pancreatic secretion vs. that of vagotomized dogs kept at room temperature. When animals with a normal vagus innervation were exposed for 1 hour to sunlight, the pancreas secretion was inhibited considerably and remained at

USSR

UDC 619:616.988.43:036-2:614.44

YENIKLYEV, R. Kh., Scientific-Industrial Laboratory Bashkir SSR

"Epizootiology and Measures for Eradicating Foot-and-Mouth Disease in Bashkir SSR"

Moscow, Veterinariya, No 9, 1971, pp 48-50

Abstract: An account is given of measures taken to eradicate foot-and-mouth disease (FMD) in Bashkiria, an area of frequent outbreaks of the disease in the past. A most serious outbreak of FMD in the republic began in October 1961 and lasted until July 1965. Another serious outbreak occurred in October of 1966. In both instances types 0 and A of the virus were the pathogens, although type A predominated in the 1966 outbreak. All types of ungulates were affected. The financial losses incurred in the period from October 1961 to October 1962 amounted to 3,862,295 rubles or 20 rubles and 10 kopeks for each diseased animal. All measures for the control and eradication of FMD in the area specified in the instructions were implemented and strictly enforced. Particular attention was given to treatment of diseased animals. Streptomycin and penicillin were administered. Observations established that about 28% of the cows at the Gairy-producing farms were affected with mastitis. The application of propolis in the form of a 15% 1/2

USSR

YENIKEYEV, R. Kh., Veterinariya, No 9, 1971, pp 48-50

ointment to the affected nipples had an anesthetic effect permitting the milking of cows by hand. The anesthetic effect lasted two hours. Propolis has been found to have also a healing effect, with the healing process beginning 2-3 days in mild cases of mastitis, 3-5 days in moderate cases, and 5-8 days in severe cases after the application of the ointment. Among prophylactic measures used was the vaccination of the young stock with a vaccine prepared from the blood of convalescing animals. Successful vaccination saved 157.730 young animals in the course of the epidemic. No outbreaks of the disease in Bashkiria in the past three years have been reported.

2/2

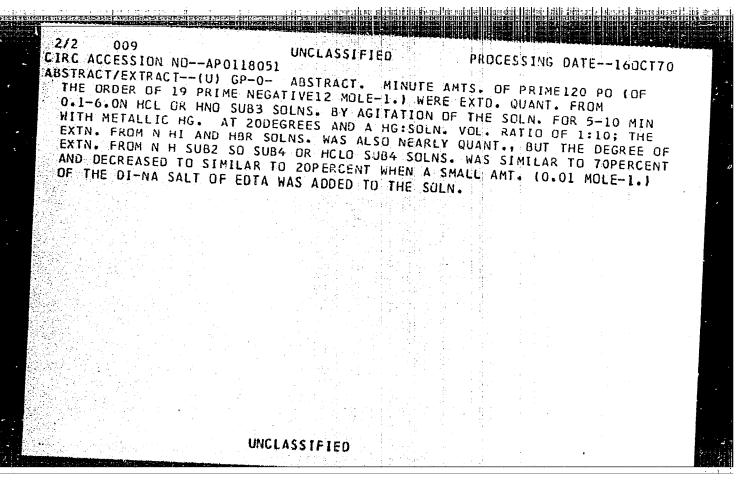
- 68 --

Veterinary Medicine

USSR

UDC 911.3.616.988.43(470.52)

YENIKEYEV, R. Kh.


"Seasonal Epizootics of Foot and Mouth Disease in the Bashkir ASSR (1961-

V sb. Virusn. bolezni s.-kh. zhivotnykh. Ch 2. (Virus Diseases of Farm Animals -- collection of works. Part 2) Moscow, 1970, pp 192 (from RZh-Meditsinskaya Geografiya, No 4, Apr 71, Abstract No 4.36.75)

Translation: An increase in foot-and-mouth disease incidence in the republic occurs in the spring-summer and autumn periods. In 1961-1968, 2,048 points were recorded. Of these, 12% were noted in January-April; 54.6% in May-

1/1

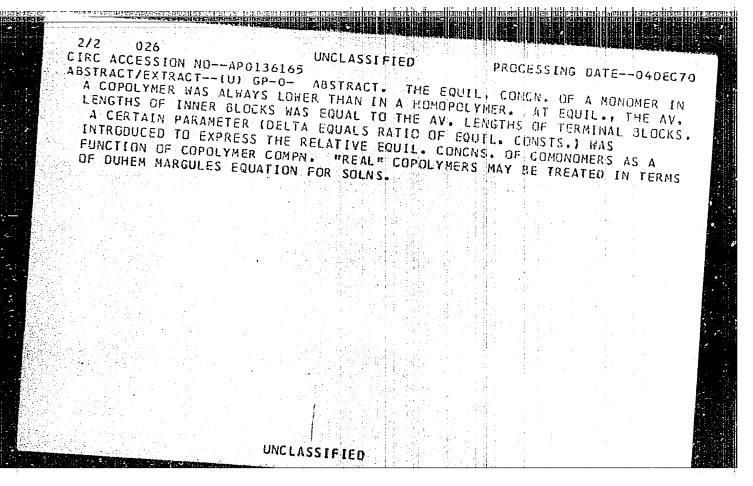
1/2 009 UNCLASSIFIED TITLE--AMALGAMATION OF VERY SMALL AMOUNTS OF POLONIUM WITH MERCURY -U-PROCESSING DATE-160CT70 AUTHOR-(03)-GLADYSHEV, V.P., YENIKEYEV, R.SH., NAURYZBAYEV, M.K. COUNTRY OF INFO--USSR SOURCE--RADIOKHIMIYA 1970, 12(1), 195-7/ DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS-AMALGAMATION, POLONIUM, MERCURY CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/0882 STEP NO--UR/0186/70/012/001/0195/0197 CIRC ACCESSION NO--APO118051 UNCLASSIFIED

USSR

UDC 911.3.616.921.5(470.23)

YENIKOLOPOVA, L. S., and ZHILOVA, G. P.

"The Role of Swine in the Circulation of Influenza A_2 Virus in the 1969


V sb. Virusn. bolezni s.-kh. zhivotnykh. Ch. 2 (Virus Diseases of Farm Animals -- collection of works. Part 2), Moscow, 1970, pp 205-207 (from RZh-Meditsinskaya Geografiya, No 4, Apr 71, Abstract No 4.36.79)

Translation: Data was obtained confirming the participation of swine in the circulation of human influenza virus.

1/1

O.

UNCLASSIFIED TITLE--THERMODYNAMICS OF REVERSIBLE COPOLYMERIZATION -U-PROCESSING DATE--04DECTO AUTHOR-1021-BERLIN, A.A., ENIKOLOPYAN, N.S. COUNTRY OF INFO--USSR SOURCE--VYSOKOMOL. SOEDIN., SER. B 1970, 12(5), 337-40 DATE PUBLISHED-----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS-THERMODYNAMICS, COPOLYMERIZATION, MONDMER, EQUILIBRIUM CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/0726 STEP NO--UR/0460/70/012/005/0337/0340 CIRC ACCESSION NO--APO136165 UNCLASSIFIED

